

Mountain Run PCB TMDL Study:

Second Technical Advisory Committee Meeting

Mark Richards & Rebecca Shoemaker
Virginia Department of Environmental Quality
July 26, 2022

Agenda

- Welcome and Introductions
 - Meeting Objectives
- Refresher TMDL Development
- Setting the TMDL Endpoint
 - Bioaccumulation Factor/WQS
 - Endpoint Discussion
- Watershed Modeling
 - HSPF
 - Discuss TMDL Allocations
- Wrap-up & Next Steps

Our goals for today...

- Review with you
 - PCB background information and impacts to Mountain Run
 - DEQ's PCB source assessment study for Mountain Run
- You share your thoughts
 - Setting the TMDL endpoint
 - PCB Allocations

Continuous Planning Process

VA Water Quality Criterion – Total PCBs

Agency	Fish Tissue Threshold (ppb)	WQC (pg/L)
VDH	100 (Fish Consumption Advisory)	
DEQ	18 (Screening Value)	640 Draft revision - 580

- DEQ's Water Quality Assessment (Integrated Report)
 - VDH: Consumption Advisory = impairment
 - DEQ: If two or more fish samples exceed screening value at a site or two water samples exceed criterion at a site = impairment

From: DEQ's 2022 Water Quality Assessment Guidance Manual

DEQ Fish Tissue Monitoring

 Monitor to assess the "Fishable" Goal of the Clean Water Act -305(b)

 Target lipophilic or "fat loving" contaminants that accumulate in tissue

- PCBs, Pesticides, etc.
- Compare to trigger values (protect human health)
 - Listed on "dirty waters" report if exceeds - 303(d)

Total Maximum Daily Load (TMDL)

- Pollution Budget
- Addresses different pollution categories
- PCB TMDL Multimedia approach
 - Air, Land, Water

TMDL = WLA + LA + MOS

Where:

WLA = Waste Load Allocation

LA = Load Allocation

MOS = Margin of Safety

To be restored the waterbody must meet two thresholds: 1)

Numeric WQC [or site specific value] and 2) fish tissue threshold

The TMDL Process

Fish Consumption Advisory

Identify problem

Low level PCB analysis

Completed

Source assessment

- Identify sources
- Estimate loads

Completed

Link sources to targets

- Assess linkages
- Estimate total loading capacity

In Process

TMDL allocations

- Reduce loads from point sources
- Divide remaining loads among sources

TMDL = Sum of WLA + Sum of LA + MOS

DEQ

PCB Background and Mountain Run Water Quality Impairment

Polychlorinated Biphenyls: PCBs

- Biphenyl molecule (1-10 chlorine atoms)
- Aroclors (Monsanto tradename) = mixture of PCB compounds
 - Examples 1248, 1254, 1260
- Legacy Contaminant (banned 1977)
- Stable & persists in the environment
- Common uses:
 - Transformers, capacitors, hydraulic fluids, circuit breakers, PVC Products, carbonless copy paper, caulking material, paints, and more!

PCBs Continue to be an Issue – Why?

- Human health concern
 - Fish consumption significant exposure pathway
 - Carcinogen (suspected)
 - Immunotoxicity, hepatotoxicity (liver)
 - Affects reproduction and development
- Persistent, bioaccumulates at a low conc. (pg/L) & biomagnifies
- Confirmed on-going releases

Mountain Run PCB Impairment Timeline

- 1999 & 2001: DEQ monitors fish tissue
- 2004: VA Department of Health issues fish consumption advisory for the American Eel (≤ 2 meals/month)
- 2006: 19.9-mile segment placed on VA's impaired waters list
- 2006 & 2013: DEQ completes additional fish tissue monitoring
- 2013-2018: DEQ completes water and sediment monitoring to prepare for PCB study
- 2020: Impaired segment increased to 24.53-miles due to water concentrations
- 2021: DEQ Initiated TMDL

Photo: https://www.cfr.msstate.edu/wildlife/fisheries/pdf/AmericanEel.pdf

DEQ

VDH Fish Consumption Advisory

DEQ TMDL Sampling Approach 2013 – 2015, 2018 & 2021

- Source identification
- TMDL model support
 - Calibration/validation
- 2013 2018, 2021 water column, sediment
 - Water column grab samples: High and Base Flow (n = 68)
 - Sediment samples as needed

TMDL Source Category Point Sources

Permitted facilities

(1) Municipal WWTP (7) Industrial Storm Water (General Permits)

No Regulated Storm Water (MS4)

MS4 – Municipal Separate Storm Sewer System

TMDL Source Category

Contaminated Sites

Voluntary remediation program (DEQ)

Spill sites

Electric Utility
Transformer Pads

Rail Yards/Spurs

*RCRA Corrective Action

*CERCLA

During Waste Clean-up

INVESTIGATIONS TO DATE AT THE
JIM'S LIQUID WASTE DISPOSAL SITE
CULPEPER, VIRGINIA

AUGUST 9, 1988

Jim's Liquid Wastes
RM 10.98

Hill

RM 14.33

Stevensburg

CULPERN NEW - 3 SENT 1987

Work Starts, Then Stops

^{*} Screened but non identified as a source

TMDL Source Categories

Non-regulated Surface Load

Unregulated stormwater

Loads from small tributaries

Unidentified Contaminated Sites

Atmospheric Deposition

Unspecified Point Sources

Streambed Sediment

Photo: Bryan Hofmann

TMDL Endpoint

Determining a PCB Endpoint: Two Options

Use water quality criterion

*640 pg/L

*Impending Revision = 580 (pg/L) Default if < site specific value

Calculate sitespecific value

Based on fish tissue samples from impaired stream

Calculate bioaccumulation factor for each species

PCB levels in the stream

PCB levels in fish tissue

Bioaccumulation Factor Approach (BAF)

Factors to Consider for a Site-Specific Endpoint

Calculating a bioaccumulation factor (BAF)

Within the <u>home range</u> of a fish species Within a **TMDL** watershed Normalized for Normalized by Ratio of Water Median of freely dissolved median fish lipid PCBs and home range PCBs and fish content & freely Fish Tissue values tissue lipid dissolved PCBs **PCBs** content BAF values are calculated for each fish species in Normalized

- a TMDL watershed
- The TMDL endpoint is based on some average of selected fish species BAF values

values divided by fish tissue threshold value (18 ppb)

Determining a PCB Endpoint in Mountain Run

Feeding Strategy	Fish Species	Endpoint (pg/L)	Sample Size (n)	Individuals
Predator	American Eel	25.00	11	76
Predator	Fallfish	290.00	2	12
Predator	Rock Bass	580.00	1	10
Benthivore-generalist	Sunfish sp.	250.00	10	89
Predator	Smallmouth Bass	360.00	1	4
Benthivore-generalist	White Sucker	110.00	3	24
Benthivore-generalist	Yellow Bullhead	56.00	7	39

Scenario 1 based on all species			
Summary Statistics			
n	35		
min (pg/L)	25.0		
max (pg/L)	580.0		
mean (pg/L)	240.0		
median (pg/L)	250.0		
geometric mean (pg/L)	160.0		
weighted mean (pg/L) sample			
size	140.0		
weighted mean (pg/L)			
indivduals; n= 254	160.0		

Scenario 2 based on Feeding			
Strategy			
Summary Statistics			
Scenario 2	Mean (pg/L)		
Benthivore-Generalists	140		
Predators	310		

Scenario based on using Advisory Species				
Scenario	pg/L			
American Eel	25			
Yellow Bullhead	56			

Modeling PCBs

Mountain Run PCB TMDL TAC Meeting July 26, 2022

Model Process

- PCB model consists of 3 major components:
 - 1. Hydrology
 - 2. Sediment transport
 - 3. PCB fate and transport
- Model calibrated using observed data:
 - 1. Stream gage flow data
 - 2. Suspended sediment concentration data
 - 3. PCB concentration data

os://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Polychl phenyl_structure.svg/2000px-Polychlorinated_biphenyl_structure.svg

Mountain Run Sub-Watersheds

1. Watershed inputs are used to develop model.

- 1. Watershed inputs are used to develop model.
- 2. Model simulates watershed processes (flow, pollutant fate and transport).

- 1. Watershed inputs are used to develop model.
- 2. Model simulates watershed processes (flow, pollutant fate and transport).
- 3. Model is calibrated to observed data.

- 1. Watershed inputs are used to develop model.
- 2. Model simulates watershed processes (flow, pollutant fate and transport).
- 3. Model is calibrated to observed data.
- 4. Calibrated PCB outputs are compared with TMDL endpoints.

- 1. Watershed inputs are used to develop model.
- 2. Model simulates watershed processes (flow, pollutant fate and transport).
- 3. Model is calibrated to observed data.
- 4. Calibrated PCB outputs are compared with TMDL endpoints.

5. Model allows evaluation of multiple pollution reduction scenarios.

- 1. Watershed inputs are used to develop model.
- 2. Model simulates watershed processes (fl , , pollutant fate and transport).
- 3. Model is calibrated to observed data.
- 4. Calibrated PCB outputs are compared with TMDL endpoints.

- 5. Model allows evaluation of multiple poliution reduction scenarios.
- 6. Stakeholders select acceptable reduction scenario to achieve TMDL.

Only use the following slides if needed to clarify and answer questions.

Model Calibration

Compares Observed Sampling with Simulated Output

• "Weight-of-evidence" Approach

Graphical Analysis

Quantitative Analysis

Value
62
81%
14%
5%

Hydrology Component

- Simulates the watershed water balance
- Meteorology (precipitation and evapotranspiration) is the driving force
- Accounts for:
 - Spring flow
 - Major withdrawals (municipal water supply and industrial cooling water)
 - Major discharges (water treatment plants, industry)

http://prairierivers.org/what-is-a-watershed/

Sediment Component

- Simulated total suspended solids (TSS) concentrations calibrated against observed suspended sediment concentration (SSC) data
- Two Phase calibration process

Soil detachment and washoff (erosion)

In-stream sediment resuspension and deposition

PCB Fate and Transport Component

- Simulated "dissolved" PCB concentration (tPCB) calibrated with DEQ observed water column PCB concentration data
- Adsorption and desorption coefficients were used to model how sedimentattached PCBs enter the water column
- Calibrated for all segments

PCB molecules

ttps://upload.wikinedia.org/wikipedia/commons/thumb/4/49/Polychlorinated_bipheny.structure.svg/2000px-Polychlorinated_biphenyl_structure.svg.png ttp://images.fineartamerica.com/images-medium-large/polychlorinated-biphenyl-nolecule-dr-tim-evans.jpg

Calibration Process

- Sources with *Fixed Loading Rates* loading rates established by permit, previous studies, or sampling data
 - Permitted Facilities
 - PREP Spills
 - Contaminated Sites
 - Atmospheric Deposition
 - "Background" Conditions Forest, Agricultural and Residential Land Uses

Calibration Process

- Sources with Calibrated **Loading Rates** – loading rates established by sampling data
 - In-Stream Sediment
 - Commercial/Industrial Conditions – Highly impervious areas

PCB Calibration Graphical Analysis

PCB Calibration Graphical Analysis

5-Day Calibration Window Plot (Mountain Run, Station at Reach 1)

PCB Calibration Window Statistics

Calibration Window Summary Statistics (Mountain Run, All Stations)

Statistics	Value
Number of Observed Data Points	62
Percentage within 5-day window	81%
Percentage above 5-day maximum	14%
Percentage below 5-day minimum	5%

Calibration Window Criterion:

- ≥ 50% Within 5-Day Window for **ALL** Stations
- Approximately equal bias Above and Below windows
- Majority of 5-Day Averages to be ± 100% of observed sample
- PCB calibration window criteria were met for ALL calibration segments

PCB Allocations

Annual Relative Contributions to PCB Concentrations at the Mountain Run Watershed Outlet

Mountain Run PCB Allocations

Required PCB Loading Reductions to Meet TMDL Endpoint										
	(%)					TMDL Endpoint Exceedance (%)				
			Loads from							Daily
	Loads from	Loads from	Nonregulated	Loads from					Daily Mean	Mediar
Allocation	Permitted	Contaminated	Surface	Streambed		Scenario 1	Scenario 2	Scenario 3	tPCB conc	tPCB cor
Scenario	Sources	Sites	Sources	Sediments	Spills	240 pg/L	310 pg/L	640 pg/L	(pg/L)	(pg/L)
Existing Conditions	0	0	0	0	0	100	100	14	669	329
Scenario 1 (≤10% Exceedance of 240 pg/L)	18	99	99	25	100	10	2	0	209	201
Scenario 2 (≤10% Exceedance of 310 pg/L)	†	99	99	0	100	100	10	0	276	268
Scenario 3 (0% Exceedance of 640 pg/L)	_ 6	99	97	0	100	100	14	0	284	270

__† & __§ Reserve load from Town of Culpeper WWTP is 5% (scenario 2) and 118% (scenario 3) under what can be discharged and meet TMDL condition

Mountain Run PCB Allocations (Proposed)

- Proposed scenario includes the revised (impending) application of the WQC
 - "Long Term Average" included in a footnote
- Continue to use the BAF derived scenario 2
 - TMDL Endpoint = 310 pg/L
- Incorporate within an appendix of the TMDL study report

	Required		Daily						
Allocation Scenario	Loads from Permitted Sources	Loads from Known Contaminated Sites		Loads from Streambed Sediments		Exceedance of 580 pg/L (%)	Mean tPCB conc. (pg/L)	Daily Median tPCB conc. (pg/L)	
Existing Conditions	0	0	0	0	0	14	669	329	
Allocated Conditions*	-	99	55	0	100	12	440	294	

TMDL Implementation Process

Developing a Pollutant Minimization Plan for PCBs

Point Source/Nonpoint Source:

"Fingerprinting"

Objective: To identify a specific pattern or "fingerprint" of congeners that could be indicative of a pollution source

- 1. # of fingerprints in the system
- 2. Chemical composition in each fingerprint
- 3. contribution of each fingerprint in each sample

Example "Fingerprint" for Sediment

Next Steps

- Finalize and share the draft TMDL study
- Final public meeting

Photo: October Greenfield, Friends of the Rappahannock

Questions

Mark Richards (DEQ) mark.richards@deq.virginia.gov

Rebecca Shoemaker (DEQ)
Rebecca.shoemaker@deq.virginia.gov

Karen Kline (VT BSE) klinek@vt.edu

Photo: October Greenfield, Friends of the Rappahannock

