Agriculture statistics: Change since Bacteria TMDL

USDA National Agricultural Statistics Service, NASS

	Bedford County			
ltem	2002	2022	% change	
Farm Acres	199,244	183,200	-8%	
Cattle/Calves	46,693	38,626	-17%	
Beef Cattle	23,500	20,984	-11%	
Dairy Cattle	1,838	230	-87%	
Sheep	343	507	48%	
Horses	2,104	1,542	-27%	

DEQ

What changes have you seen in the watersheds?

- 1. What is the current growth trend for agriculture in the area? Do you expect to see significant changes in farming practices over the next 5-10 years?
- 2. Is there a trend or has there been a change in crop practices? What % of cropland is already implementing conservation (e.g., continuous no-till) practices?

Residential Overview

Within the Beaverdam Creek watershed, estimated totals (US Census 2020):

		Houses with Failing	Houses with	Pets	
Estimated Population	Total Septic Systems	Septic Systems	Straight Pipes	Dogs	Cats
		10% of households	0.5% of households	1.7 per household	2.1 per household
3,582	1,665	166	8	2,831	3,497

DEQ

What changes have you seen in the watersheds?

- 1. What is the current trend in housing? Are new homes being built, or is the housing stock aging?
- 2. Is there plan for future expansion of sewer coverage in the watershed?
- 3. Is there any information regarding straight pipes in the watershed?

Potential Sediment Practices:

Agricultural

Practice type	Practice description	Sediment reduction	Cost/Unit	
Livestock exclusion	Livestock exclusion with narrow buffer and grazing mgmt. (SL-6N)		\$75,000/system	
	Livestock exclusion with wide buffer and grazing mgmt. (SL-6W)	40%		
	Livestock exclusion with buffer, no off-stream water			
Pasture practices	Pasture Management (SL-9, SL-10)	30%	\$150/acre	
	Streamside buffer: grass and shrub	48%, LU Change	Variable	
	Streamside buffer: forested	48%, LU Change	Variable	
	Permanent vegetative cover on critical areas (SL-11)	LU Change	\$2,000/acre	
	Afforestation of erodible pasture (FR-1)	LU Change	\$570/acre	
Cropland practices	Long term vegetative cover on cropland (SL-1)	LU Change	\$300/acre	
	Continuous no-till (SL-15B)	70%	\$100/acre	
	Cover crop (SL-8B, SL-8H)	20%	\$40/acre	

DEQ

What needs to be done to address <u>Agricultural</u> sources of Sediment?

- 1. What is the level of interest in installing best management practices (BMPs)? What % are interested in 10-, 25-, 35-, 50-foot buffers? What types of practices do they prefer?
- 2. What are the BMPs on the list that are likely to generate the most interest? Least interest?
- 3. Are there any BMPs of interest that you are not seeing on our list?
- 4. Is there interest in rotational grazing systems? Other pasture management practices?
- 5. Is there interest in converting poor pasture or erodible cropland to forest?

Potential Sediment Practices:

Urban/Residential

Practice description	Sediment reduction	Phosphorous reduction	Cost/Unit
Bioretention filters	55% - 95%*	55% - 90%*	\$10,000/treated acre
Bioswales	55% - 95%*	75%	\$42,000/treated impervious acre
Dry swales	0%	52% - 76%*	\$18,150/treated acre
Detention basin retrofit	Varies by nature of retrofit	Varies by nature of retrofit	Varies by nature of retrofit
Pervious pavement	55% - 80%*	20% - 85%*	\$240,000/treated acre
Streamside buffer: grass/shrub	48%, LU Change	36%, LU Change	Variable
Streamside buffer: forested	48%, LU Change	36%, LU Change	Variable
Streambank stabilization	44.88 lbs/ft/yr	0.068 lbs/ft/yr	\$750-\$1000 per linear foot

^{*-} Efficiencies varies based upon design specifications

DEQ

What needs to be done to address <u>Urban/Residential</u> sources of Sediment?

- 1. What is the level of interest in installing best management practices (BMPs)?
- 2. What are the BMPs on the list that are likely to generate the most interest? Least interest?
- 3. Are there any BMPs of interest that you are not seeing on our list?

Potential Bacteria Reduction Practices:

Agricultural

Practice Type	Practice Description	Bacteria Reduction	Units	Cost / Unit
Cropland	Long Term Vegetative Cover on Cropland (SL-1)	75%	acres	\$300
Practices	Cover Crop (SL-8B, SL-8H)	20%	acres	\$40
Livestock Waste Reduction Practices	Afforestation of Erodible Crop and Pastureland (FR-1)	Land Use Change	acres	\$570
	Small Acreage Grazing System – Equine (SL-6AT)	40%	acres	\$260
	Stream Exclusion with Grazing Land Management (SL-6N, SL-6W)	100%	system	\$75,000
	Pasture Management – Cattle (SL-9, SL-10T)	50%	acres	\$75
	Permanent Vegetative Cover on Critical Areas (SL-11)	75%	acres	\$2,000
	Water Control Structure (WP-1)	70%	acres treated	\$130
	Stream Protection (WP-2N, WP-2W)	100%	system	\$15,000
	Animal Waste Control Facility (WP-4)	40%	system	\$90,000

9

DEO

What needs to be done to address <u>Agricultural</u> sources of Bacteria?

- 1. What are the BMPs on the list that are likely to generate the most interest? Least interest?
- 2. Are there any BMPs of interest that you are not seeing on our list?
- 3. Is there interest in rotational grazing systems? Other pasture management practices?
- 4. Is there interest in practices to address manure spreading on crop or pasture fields?
- 5. Any barriers to implementing stream fencing and improving pasture management in this watershed?

Potential Bacteria Reduction Practices:

Residential Wastewater/ Pet Waste

Practice Type	Control Measures	Bacteria Reduction	Units	Cost/Unit
Residential Wastewater	Septic Tank Pump-Out (RB-1)	5%*	System	\$400
	Connection to Public Sewer (RB-2)	100%	System	\$11,000
	Connection to Public Sewer with Pump (RB-2P)		System	\$18,000
	Septic Tank System Repair (RB-3)	100%	System	\$5,000
	Septic Tank System Installation/Replacement (RB-4, RB-4P)	100%	System	\$8,000 - \$12,000
	Alternative On-site Waste Treatment System (RB-5)	100%	System	\$24,000
Pet Waste	Pet Waste Disposal Station (PW-1)	75%	number	\$600
	Pet Waste Treatment (PW-2)	100%	number	\$200
	Pet Waste Treatment for Confined Canine Facilities (PW-3)	100%	number	\$16,000
	Pet Waste Education Program	50%	program	\$5,000

^{*}Phosphorus removal efficiency is also 5%

What needs to be done to address <u>Residential</u> <u>Wastewater/Pet Waste</u> sources of bacteria?

- 1. Are there any particular BMPs that you would prefer to see implemented?
- 2. What % of failing septic systems need to be repaired vs. replaced?
- 3. Of the failing systems and straight pipes, what % would require a conventional system vs. an alternative system?
- 4. What's the possibility to hook up to sewer? Any new projects in future?
- 5. Is there interest in pet waste stations? Where? What watersheds are kennels located in?