



#### Sand Branch Public and Technical Advisory Committee Meetings

#### **PC/Laptop View**

Minimize the control panel → or maximize the control panel ←

Raise or lower your hand →

\*Phone call provides better quality audio

Enter questions then click send →



#### **Mobile Devices View**

#### **Android**





Raise **↓** Lower Hand







# Sand Branch Benthic TMDL Study

First Public and Technical Advisory Committee Meetings

Sarah K. Sivers
Water Quality Planning Team Lead
Virginia Department of Environmental Quality
October 29, 2020

# Agenda

- Welcome and Introductions
  - Opening Remarks / Introductions
  - Meeting Objectives
- Overview of Water Quality Planning
- Water Quality Impairment in Sand Branch
- Overview of the TMDL Study for Sand Branch
- Wrap-up and Next Steps









# **Overview of Water Quality Planning**

#### **Water Quality Standards**

- Designated Uses
  - All waters designated for: recreation, aquatic life, wildlife, fish consumption, and shellfish (tidal)
  - Additional use that can be designated: public water supply
- Criteria
  - To protect and maintain designated uses
  - Numeric
  - Narrative
- Anti-degradation
  - Protects and maintains existing water quality from being degraded



# **Continuous Water Quality Planning Process**

#### **Water Quality Monitoring**

- Physical (channel condition)
- Biological (fish tissue, benthic macroinvertebrates)
- Chemical (pH, temperature, dissolved oxygen, specific conductivity, toxics, metals)

#### **TMDL** Implementation

- Waste Load Allocation (permitted sources) thru permits (e.g. VPDES)
- Load Allocation (unpermitted/nonpoint sources) through Implementation Plans
- Public Participation

# Water Quality Standards

#### **Assessment**

Integrated Report (IR), completed every 2 years, consists of:

- 305(b) Report: Status of Virginia's waters
- 303(d) Waters: List of all impaired waters

#### **TMDL Development**

- Pollutant Diet: identify existing load and reductions needed to attain WQS
- Public Participation



#### **Benthic Macroinvertebrate Community**



- One metric to evaluate attainment of the Aquatic Life Use
- Indicator of Biological Community Health
  - Live on the stream bottom 1-2 years, relatively sedentary
  - Indicates long-term effect of pollution and ecosystem impact
  - Evaluated using the Virginia Stream Condition Index (VSCI)
    - Multi-metric index
    - Based upon a reference community of organisms











#### **Benthic Stressor Analysis**

"What is causing the benthic community to be unhealthy?

- 1. List all potential causes applicable to the watershed
  - For example: nutrients, sediment, toxics, etc.
- 2. Analyze the available data and information for and against each possible stressor
  - Such as water chemistry, habitat, land use, point and nonpoint sources
- 3. Categorize each cause into:





#### **Total Maximum Daily Load (TMDL)**

A **TMDL** is the total amount of a pollutant a waterbody can receive and still meet the water quality criteria for that pollutant

$$TMDL = WLA + LA + MOS$$

#### Where:

WLA = Wasteload Allocation

LA = Load Allocation

MOS = Margin of Safety







#### **TMDL Development Process**

- Characterize the watershed (e.g. land use, soils, hydrology, etc.)
- Identify pollutant sources and associated loadings
- Model the existing baseline condition and projected condition that attains the water quality endpoint
- Calculate pollutant reductions to attain the water quality endpoint
- Assign loadings to wasteload allocations (WLA) and load allocation (LA)





#### Public Participation in a Benthic TMDL Study

Benthic Stressor Analysis

1st Public Meeting

TAC Meeting

TAC Meeting

TAC Meeting

TAC Meeting

TAC Meeting

TAC Meeting

TMDL Development





# Water Quality Impairment in Sand Branch

#### **Project Location**

#### **Sand Branch Watershed Overview**





#### Water Quality Assessment of Sand Branch

Sand Branch Watershed Draft 2020 Assessment Results





# **Water Quality Monitoring Locations**

#### **Sand Branch Watershed Monitoring Stations**





#### **Basis of the Benthic Impairment**







# Overview of the TMDL Study for Sand Branch

#### **Project Timeline**





# **Watershed Boundary**

#### **Proposed Sand Branch Watershed Boundary**





# **Ecoregions**

#### **Sand Branch Watershed Area Ecoregions**





# **Existing Land Cover**

#### **Sand Branch Watershed Virginia Land Cover Data**





#### **Future Land Use**

#### **Sand Branch Watershed Future Land Use**





### **Authorized Dischargers**

| Permit Number | Facility Name                                     | Permit Type                                           |
|---------------|---------------------------------------------------|-------------------------------------------------------|
| VAR040067     | Loudoun County                                    | Municipal Separate Storm Sewer<br>System (MS4) Permit |
| VA0091430     | Loudoun Composting                                | VPDES IP                                              |
| VAG110089     | Virginia Concrete Company Inc Chantilly Plant     | Concrete Products GP                                  |
| VAG110318     | Aggregate Industries MAR - Chantilly              | Concrete Products GP                                  |
| VAG110094     | Superior Concrete - Dulles                        | Concrete Products GP                                  |
| VAG840106     | Chantilly Crushed Stone Incorporated              | Nonmetallic Mineral Mining GP                         |
| VAG406265*    | Chantilly Liberty                                 | Domestic Sewage GP                                    |
| VAR052245     | William A Hazel Incorporated - Recycling Facility | Stormwater Industrial GP                              |
| VAR050863     | Virginia Paving Company - Chantilly Plant         | Stormwater Industrial GP                              |

<sup>\*</sup>Potentially falls outside the revised Sand Branch watershed boundary



# **Location of Permitted Dischargers**

#### **Sand Branch Watershed Permitted Outfalls**





#### **DEQ Water Quality Monitoring Data**

- Chemical (2015-2019)
  - Field parameters (pH, dissolved oxygen, specific conductivity, temp.)
  - Solids (total dissolved solids, total suspended solids)
  - Nutrients (nitrogen, phosphorous)
  - Ionic strength
  - Metals
- Benthic (2016 and 2020)
- Toxicity Testing (ambient)
  - Acute and chronic (1 sample 2020)
  - Ceriodaphnia dupia and Fathead minnow (Pimephales promelas)
- Effluent monitoring (collected by VPDES Permit-holders and DEQ)







#### **Other Data**



- Loudoun County GIS data
  - 2020 aerial imagery
  - 4' topography contours and spot elevations
  - Natural resource layers (e.g., geology, soils, limestone, trees, wetlands)
  - Land use and zoning
  - Impervious surfaces
  - Infrastructure (e.g., BMPs, structures, pipes, open channels)
  - MS4 boundary
- Fairfax County
  - Cub Run watershed monitoring data (2004-2020): ambient water quality, benthic macroinvertebrates, and stream habitat
- VT Occoquan Watershed Monitoring Lab
  - Cub Run water quality data, 2000-2020 (ST50, near confluence with Bull Run)



### Data Analysis In-Progress: Identifying Probable Stressors

- Monitoring data evaluation:
  - Comparison to the Water Quality Standards
  - Stressor Analysis using stressor thresholds developed from DEQ's Freshwater Probabilistic Monitoring Program
  - Seasonal or daily water quality variations

• USEPA's Causal Analysis/Diagnosis Decision Information System

(CADDIS)

- Consider other relevant data:
  - Hydrology (stream flow and precipitation)
  - Potential influence of Triassic Basin geology
  - Surrounding land uses



### **Next Steps**

- Public Comment Period: October 30<sup>th</sup> November 30<sup>th</sup>
  - Seeking your input on:
    - Interest in being on the Technical Advisory Committee (TAC)?
    - Additional data or information to inform stressor analysis?
  - Email: <u>Sarah.Sivers@deq.virginia.gov</u>
- Hold 2<sup>nd</sup> TAC meeting:
  - Share results on stressor analysis and the most probable stressor(s) identified
  - Obtain feedback on information shared





### **Meeting Feedback**

- Questions or Comments on Sand Branch TMDL Project:
  - Sarah Sivers: (703) 583-3898 or Sarah.Sivers@deq.virginia.gov
- Meeting Feedback:
  - Virtual Meeting Public Comment Form
  - https://www.deq.virginia.gov/Portals/0/DEQ/Water/TMDL/Electronic\_Meetings\_Public\_Comment\_Form.docx
  - Submit to FOIA Board, external to DEQ

