James River PCB Project

Jian Shen
Virginia Institute of Marine Science
January 26, 2021

PCB Transport Processes in Watershed

PCB Transport Processes in Estuary

Modeling Framework of PCB Transport

Watershed model

Watershed are divided into multiple segments

Major pollutant sources

Contamination sites

• Point source

• Direct discharge

Storm water

Watershed model: CSOs (Richmond)

- Loadings Derivation Current Condition
 - utilize monthly average flows (10 yr. period) and mean PCB concentration
 - WLA substitute TMDL endpoint for PCB concentration

Watershed model: Contaminated and Remediated Sites

- 11 sites have PCB concentration
- Using watershed modeled flow and area, the loading can be estimated assuming PCB concentration is constant

Watershed model: Point Sources

Upper JR for PRO mtg - 145 facilities; Lower JR and Eliz River -

177 facilities

• combined = 322

Watershed model: Using land use

Estuarine Model: Environmental computer model

• Environmental computer models are mathematical representations of real-world conditions and are used to estimate environmental events and future changes.

Estuarine Model

Estuarine Model

 Using observations for model calibration

Estuarine Modeling: Example

Future works and Questions

- Complete watershed model
- Calibrate estuary PCB model
- Conduct loading allocation and develop TMDLs

