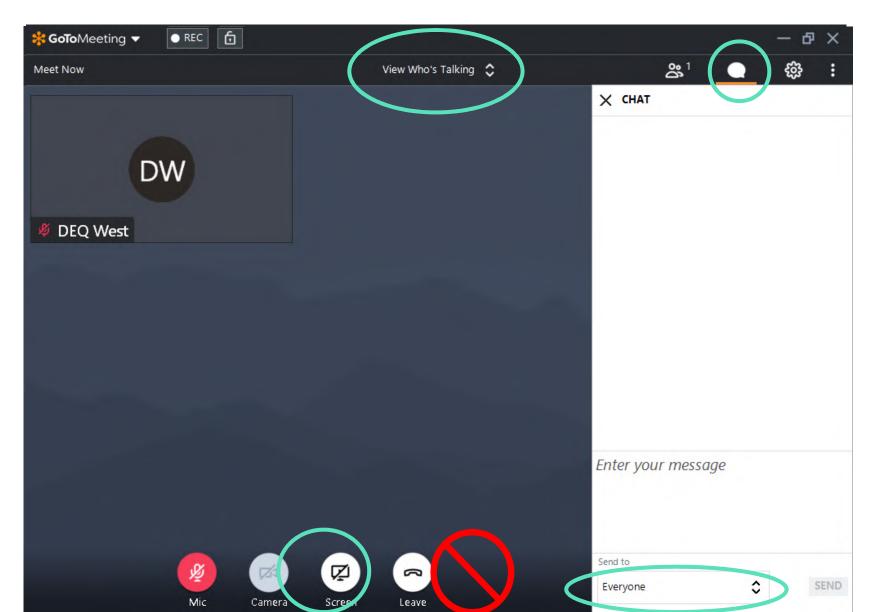
For technical support issues call: 703-583-3906


Sand Branch Benthic TMDL Study Third Technical Advisory Committee Meeting

Sarah K. Sivers Water Quality Planning Team Lead Virginia Department of Environmental Quality

Robert N. Brent Professor of Integrated Science and Technology James Madison University

April 21, 2021

Getting Familiar with GoToMeeting

For technical support issues call: 703-583-3906

Sand Branch Benthic TMDL Study Third Technical Advisory Committee Meeting

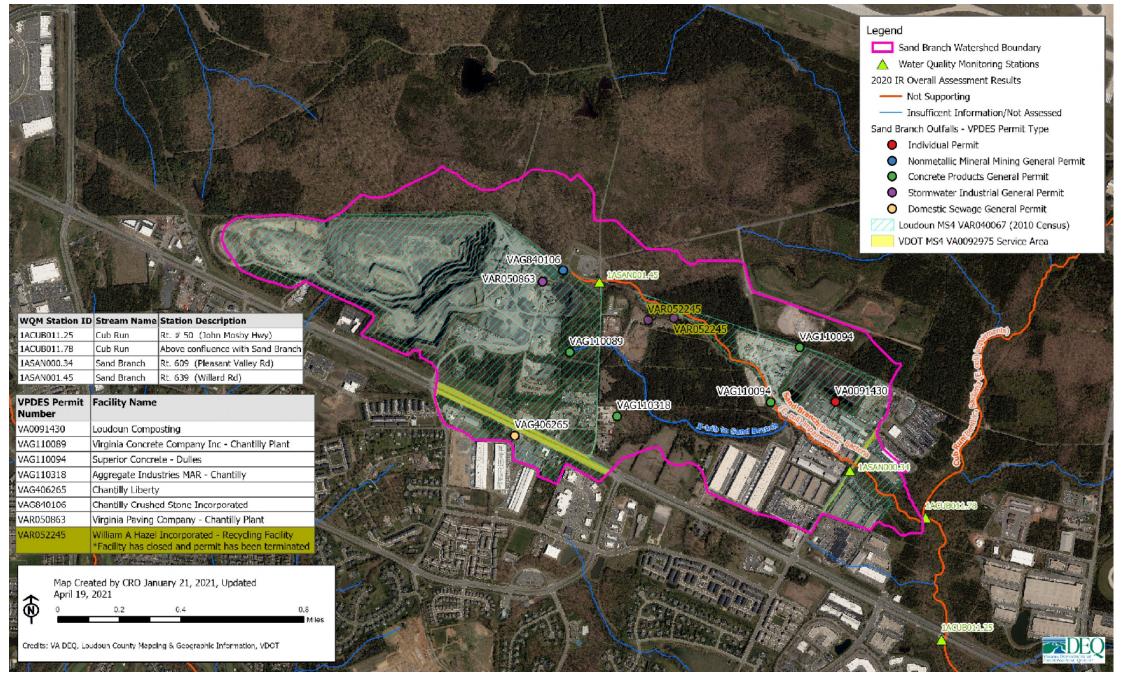
Sarah K. Sivers Water Quality Planning Team Lead Virginia Department of Environmental Quality

Robert N. Brent Professor of Integrated Science and Technology James Madison University

April 21, 2021

Agenda

- Brief Refresher
- Stressor Analysis
 - Updated Information
 - Biological and Habitat Data Analysis
 - CADDIS
 - Probable Stressors
- Planning for TMDL
 - TMDL Targets
 - Water Quality Monitoring
 - Project Timeline
- Wrap-up and Next Steps



For technical support issues call: 703-583-3906

Refresher Material Covered in 2nd TAC Meeting

Chemical / Physical Parameters Analyzed

Candidates <u>with</u> stressor thresholds ^{1,2} :	pН	Dissolved Oxygen (DO)	Total Phosphorus	Total Dissolved Solids (TDS)	Potassium
	Temperature	Specific Conductivity	Total Nitrogen	Sulfate	Chloride
	Sediment ³	Sodium	Metal Cumulative (Metals CCU)	Criterion Unit	Individual Metals, Dissolved
Candidates <u>without</u> stressor thresholds ² :	Total Suspended Solids (TSS)		Ammonia	DO (Saturation)	Turbidity

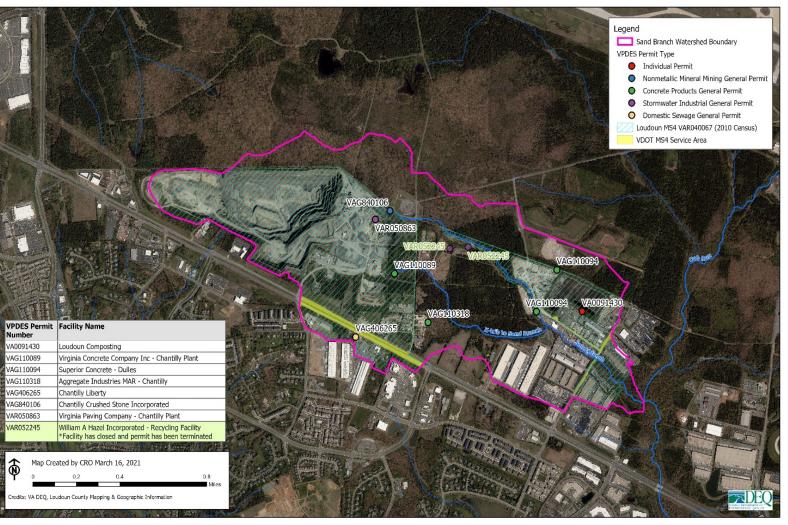
¹DEQ's Freshwater Probabilistic Monitoring Program (DEQ, 2017. Stressor Analysis in Virginia: Data Collection and Stressor Thresholds. DEQ Technical Bulletin WQA/2017-001)

²Where water quality criteria exists for a parameter, that value was also in the analysis (Water Quality Standards, 9VAC25-260). Those parameters with criteria are denoted in bold, italicized text.

³ Sediment was evaluated using Log Relative Bed Stability (LRBS) index and Habitat.

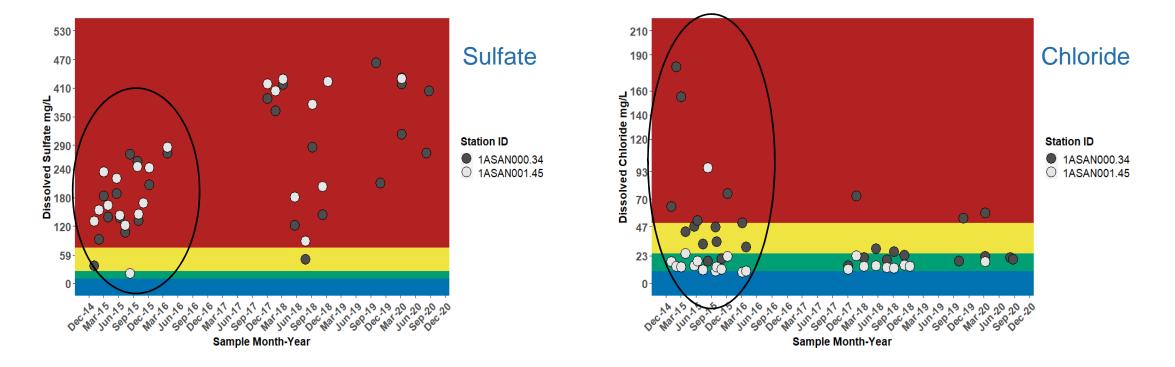
Stressor Thresholds: Definitions of Stress Probabilities

Probability of Stress to Aquatic Life	Definition
High Probability	Values that are the highest in Virginia, resulting in degradation of the benthic community.
Medium Probability	Noticeable evidence of harm causing a possible shift in benthic communities, changes noticeably above background conditions.
Low Probability	Slightly above background conditions, but unlikely to cause a major benthic community shift.
No Probability	Background conditions.


For technical support issues call: 703-583-3906

Stressor Analysis Updated Information

Updated Permit Information


- VAR052245, William A Hazel Inc. – Recycling Facility
 - Stormwater Industrial GP
 - Permit terminated (3/2021)
- VA0092975, VDOT
 - MS4 Permit
 - Included

Water Quality Chemistry Data Updated

- Ions Sulfate and Chloride
 - Added data collected prior to 2016

Water Quality Chemistry Data Updated (continued)

Ammonia

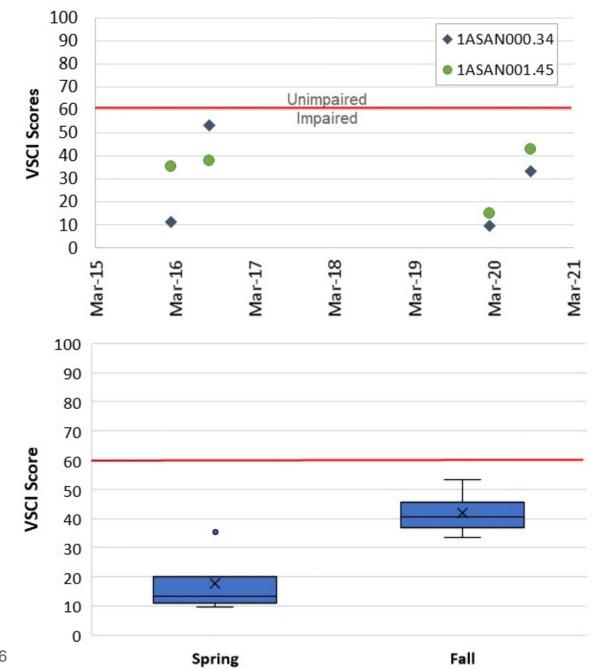
- Added 2 data points from August 2020 sampling effort
- Revised evaluation to updated WQ criteria
 - No excursions of the acute criterion
 - Single sample excursion of chronic criterion on 5/22/18

	1	ASAN000.3	1ASAN001.45							
Monitoring Date	Ammonia (mg/L)	Acute Criteria (mg/L)	Chronic Criteria (mg/L)	Ammonia (mg/L)	Acute Criteria (mg/L)	Chronic Criteria (mg/L)				
12/5/2017	0.01 ^a	7.25	1.314	0.01 ^a	6.74	1.187				
1/23/2018	0.01 ^a	5.94	1.070	< 0.008 ^b	6.57	1.165				
3/12/2018	0.03 ^a	5.01	1.089	< 0.008 ^b	5.75	1.077				
5/22/2018	1.5	5.86	1.042	0.06	3.34	0.688				
7/26/2018	0.06	2.97	0.627	0.04	3.13	0.650				
9/6/2018	0.36	3.21	0.657	0.02 a	2.60	0.564				
11/8/2018	0.48	9.19	1.494	0.02 a	7.13	1.239				
12/13/18 ^c				0.01 ^a						
10/3/2019	0.05	3.52	0.717							
10/31/2019	0.02 ^a	7.55	1.265		-					
3/9/2020	< 0.014 ^b	1.87	0.403	< 0.014 ^b	2.94	0.603				
3/11/2020	< 0.014 ^b	6.34	1.130	< 0.014 ^b	3.33	0.667				
8/10/2020	0.02 a	3.73	0.746							
8/26/2020	< 0.014 ^b	6.38	1.087							

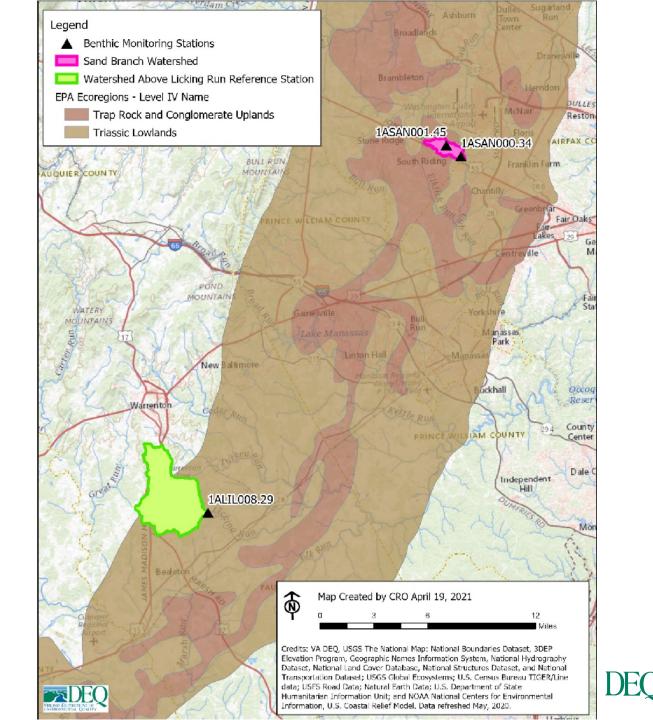
^a Analyte detected above the method detection level but below the method quantification limit.

^b Material analyzed for, but not detected. Value is the limit of detection.

^c pH and temperature data were not collected so acute/chronic criteria cannot be calculated

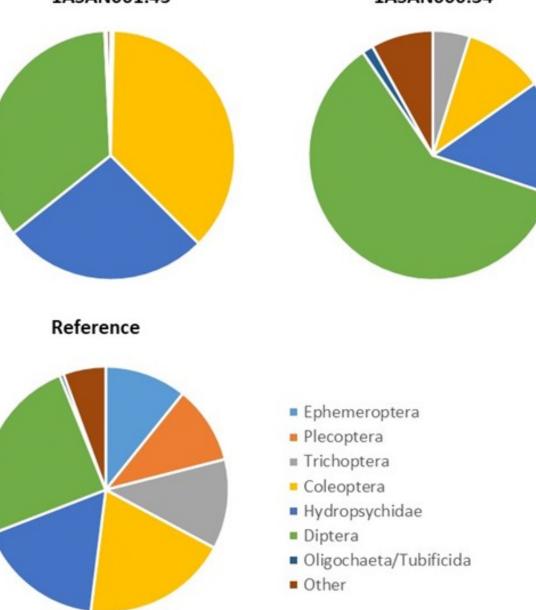


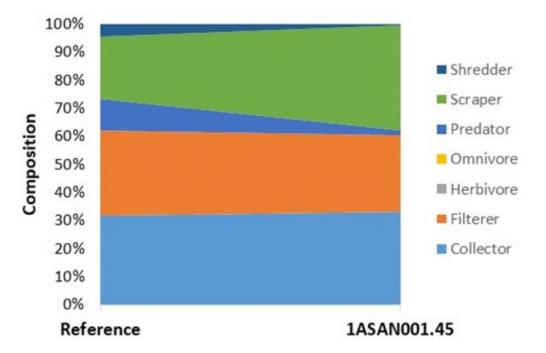
For technical support issues call: 703-583-3906

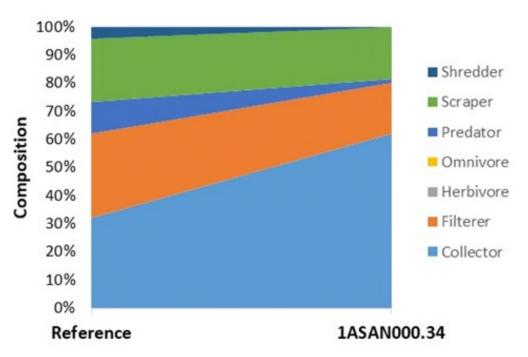

Stressor Analysis Biological and Habitat Data Analysis

- VSCI scores averages:
 - 1ASAN001.45 = 32.9
 - 1ASAN000.34 = 26.9
- Seasonal Difference
 - Spring scores much lower than fall

Reference Watershed

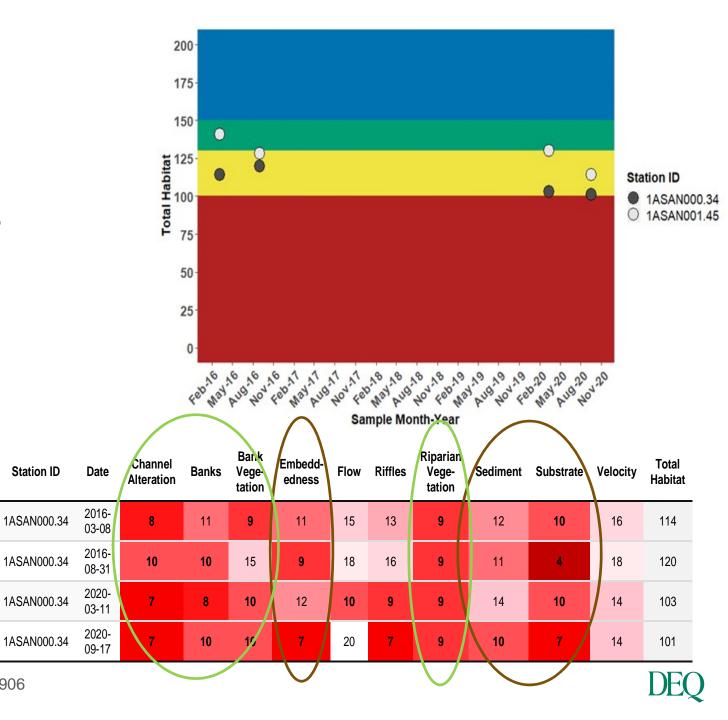

- Comparison to a reference condition is helpful in evaluating some parameters and biological conditions
- Licking Run
 - Same Triassic Basin ecoregion
 - Unimpaired benthic condition (VSCI = 62.26)
 - Ample water quality data


1ASAN001.45


1ASAN000.34

- Community Composition Analysis
 - Compared to Licking Run (Reference)
 - Loss of almost all sensitive taxa
 - Dominance by a few tolerant taxa
 - Chironomidae
 - Hydropsychidae
 - Stenelmis

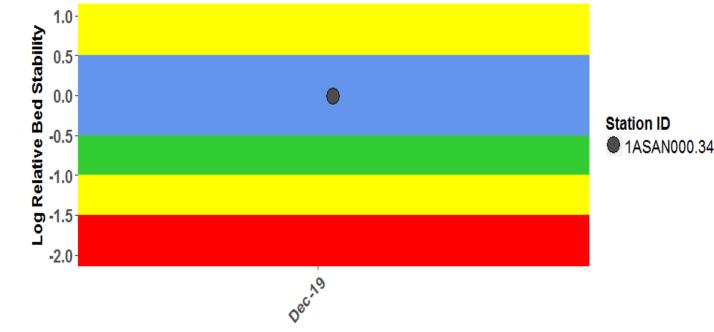
- Functional Feeding Group Analysis
 - Upstream site: Increase in Scrapers
 - Downstream site: Increase in Collectors



- Biological Condition Gradient Analysis
 - Uses stressor-specific tolerance information from dominant taxa
 - Scores of 5 indicate dominance in presence of stressor

Genus Level	No. of	Functional Feeding Group	General	Biological Condition Gradient (BCG) Attribute Assignments for Specific Stressors												
Genus Level	Individuals		Attribute ¹	DO	Acidity (pH ²)	Alkalinity (pH ²)	Specific Conductance	Chloride	Sulfate	Nutrients ³	Total Habitat Score	Relative Bed Stability	Watershed % Impervious			
Chironomidae (A)	451	Collector	4	4	4	4	4	4	4	4	4	4	4			
Stenelmis	73	Scraper	4	4	4	4	5	4	4	4	5	4	5			
Cheumatopsyche	68	Filterer	5	4	3	4	5	4	4	5	4	4	5			
Hydroptila	37	Scraper	4	3	2	3	5	4	5	5	4	3	5			
Hydropsychidae	26	Filterer	4	3	3	4	4	3	4	4	4	4	4			
Physidae	25	Scraper	5	5	4	5	5	4	3	5	5	5	5			
Corbicula	24	Filterer	бt	4	3	4	5	4	4	5	5	4	5			
Hydropsyche	20	Filterer	4	3	3		5	4	5	5	4	4	5			
Oligochaeta	11	Collector	5	4	4	3	5	4	4	5	5	5	5			
TOTAL	735		Rounded Average	4	3	4	5	4	4	5	4	4	5			

Habitat Data

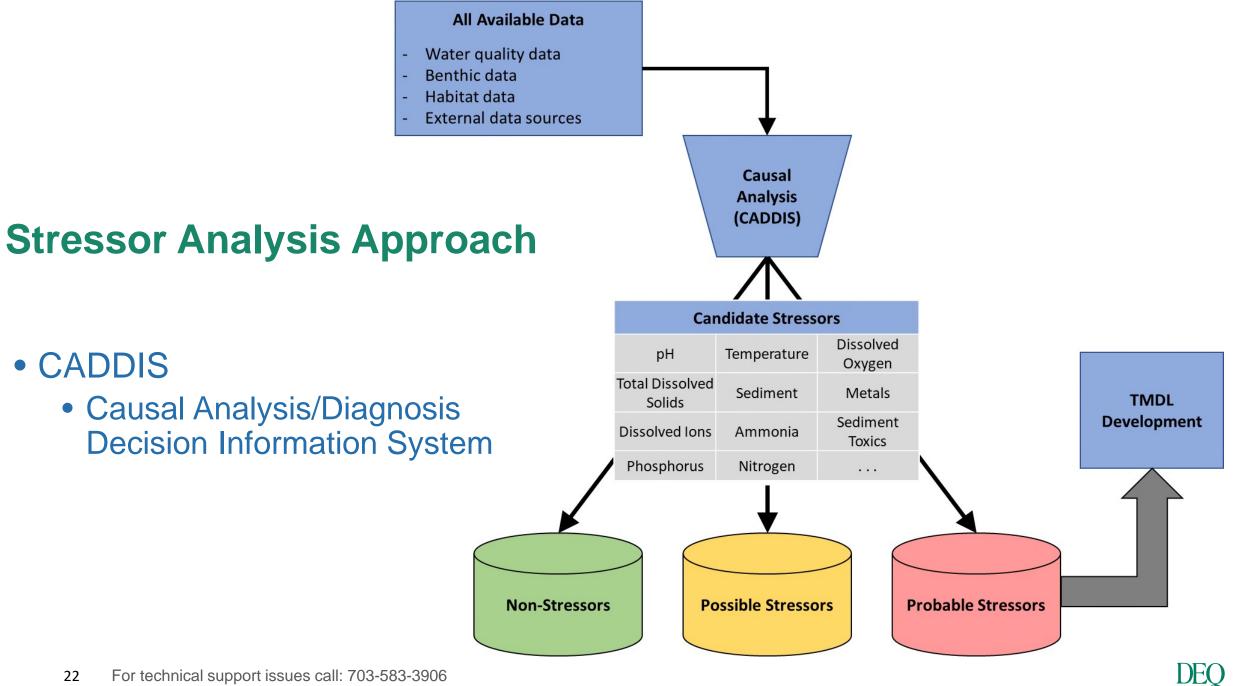

- Qualitative Habitat Scores
 - Medium probability range
 for stressor effects
 - Individual metrics low for substrate quality and riparian quality

Habitat Data

• Relative Bed Stability

- Quantitative assessment of stream habitat that compares observed sediment size to predicted
- LRBS value in the no probability range for stressor effects
- May indicate a hardening of the substrate (80%) from scour
- May be experiencing cycles of sediment deposition then scour

Sample Month-Year


Value
12%
12 th / 14 th
43%
52 th / 49 th
22%
15%
38%
18 th / 21 th

¹Based on DEQ Probabilistic Monitoring data

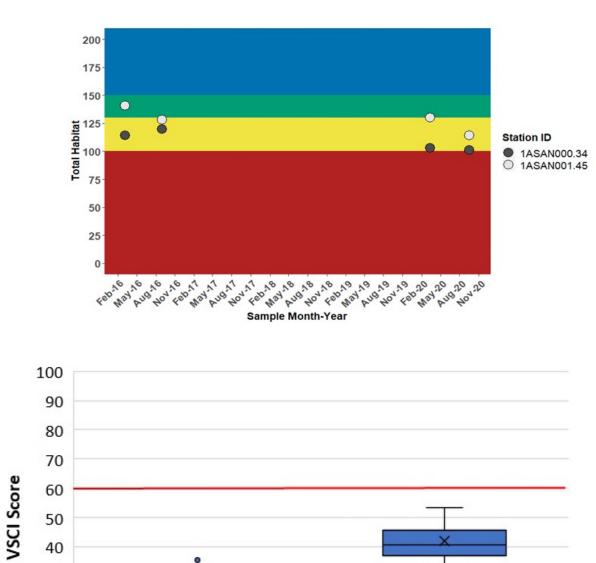
For technical support issues call: 703-583-3906

Stressor Analysis CADDIS Overview

CADDIS Approach

- For each candidate stressor and stream
- 18 lines of evidence evaluated
- Scored on a relative scale of -3 to +3 for strength of support
- Scores summed
- Higher relative score, more probable the stressor

Ex: Candidate Stressor 1									
Lines of Evidence	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6			
Spatial Co-occurrence	-3	-3	-1	-1	+3	+3			
Temporal Co-occurrence	-2	-2	0	0	+2	+2			
Causal Pathway	Sco	re	.1	. 1 Exp	anation	.1			
Stressor-Response Relationships from the Field Temporal Sequence	-2 -3	-2	The line of evidence strongly supports the candidate stressor as the cause of the impairment						
Symptoms			The line of evidence moderately supports the candidate stressor as the cause of the impairment						
Stressor-Response Relationships from Other Field Studies	-2 +1	-1	The line of evidence weakly supports the candidate stressor as the cause of the impairment						
Stressor-Response Relationships from Laboratory Studies	2 0		The line of evidence <u>does not support or refute</u> the candidate stressor as the cause of the impairment The line of evidence <u>weakly refutes</u> the candidate stressor as the cause of the impairment The line of evidence <u>moderately refutes</u> the candidate stressor as the cause of the impairment						
Stressor-Response Relationships from Simulation Models		-1							
Mechanistically Plausible Cause	-2 -3	-2	2 The line of evidence strongly refutes the candidate						
Manipulation of Exposure at Other Sites	-2	-2 \$	stressor as the	e cause of th	e impairmer	nt , 2			
Analogous Stressors	-2	-1	0	0	+1	+1			
Consistency of Evidence	-3	-2	0	0	0	0			
Explanation of the Evidence	-2	-2	0	0	0	0			
SUM	-32	-27	+1	+3	+12	+10			
	Non-St	tressor		sible ssor		oable ssor			


CADDIS Results

- Non-stressors
- Possible stressors
- Probable stressors

Candidate Stressor	CADDIS Score
pH	-24
Temperature	-13
Dissolved Oxygen	-12
Dissolved Metals	-9
Total Nitrogen	1
Chloride	1
Potassium	1
Ammonia	2
Sodium	3
Sediment	6
Total Phosphorus	16
Sulfate	16
Conductivity/TDS	31

Support for Sediment as a Stressor

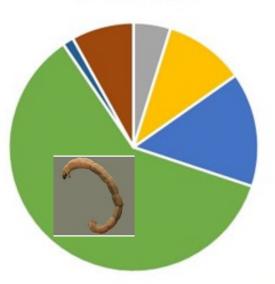
- Habitat scores in the medium probability range for stressor effects
- Seasonal pattern of benthic scores

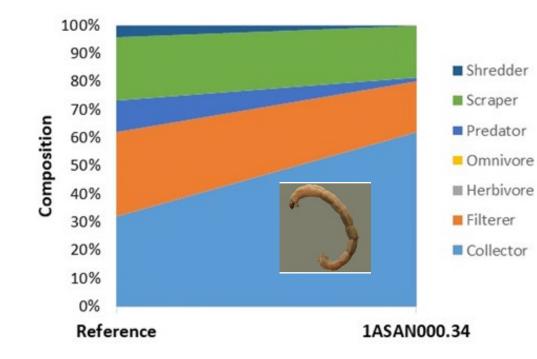
Fall

30

20

10

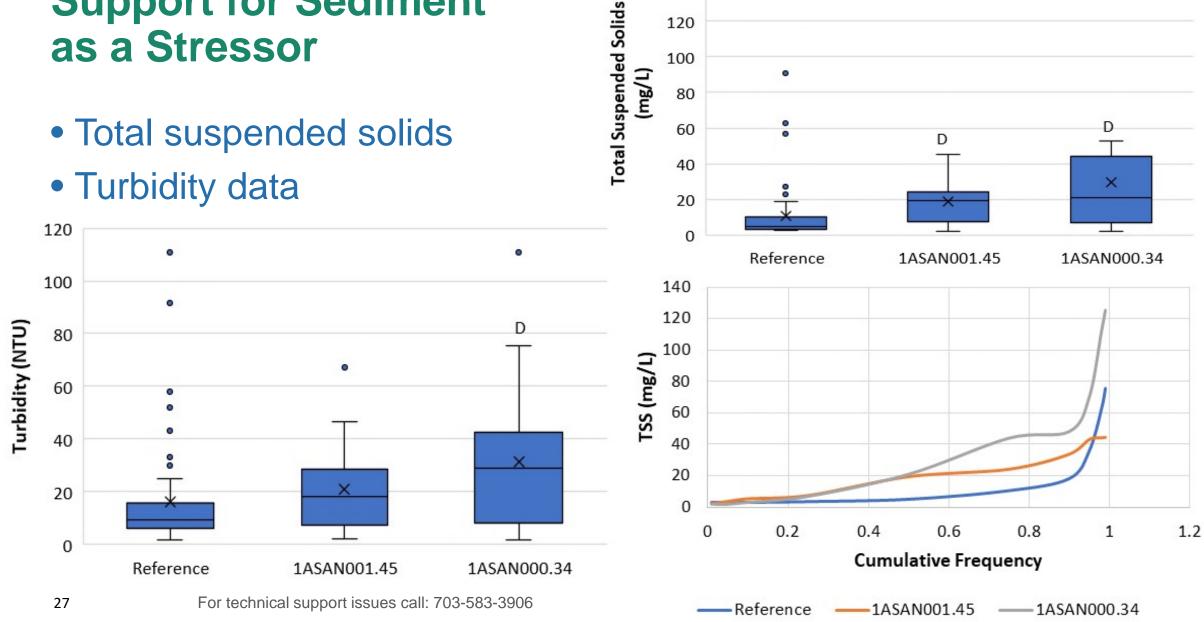

0


Spring

1ASAN000.34

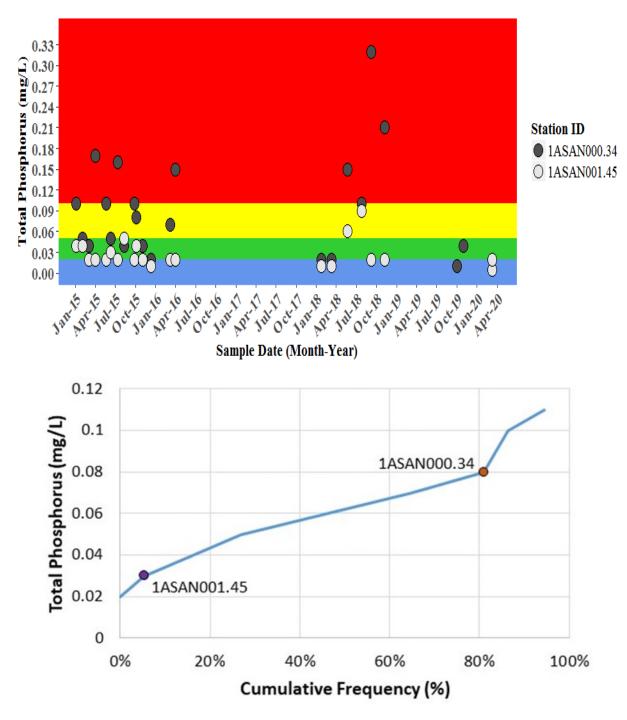
Support for Sediment as a Stressor

- Community composition
- Feeding group analysis



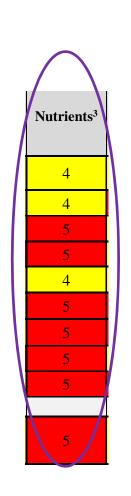
Support for Sediment as a Stressor

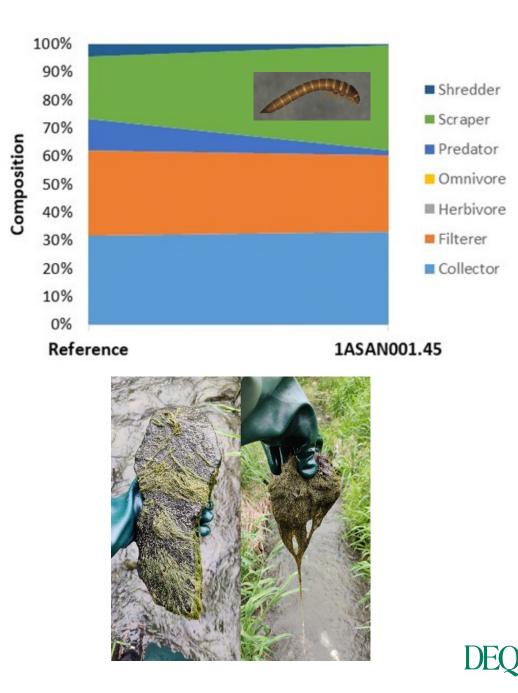
• Total suspended solids



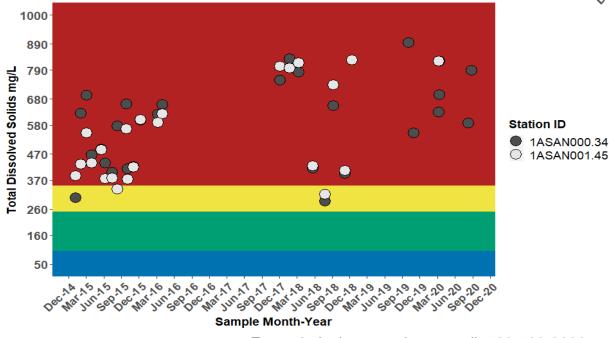
D

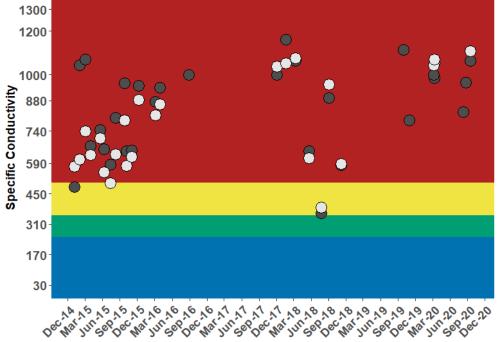
(mg/L)


Support for Phosphorus as a Stressor


- Average phosphorus levels in the medium probability range for stress effects
- Levels exceeded recommended EPA criteria for ecoregion
- 81st percentile of Triassic Basin ecoregion

Support for Phosphorus as a Stressor


- Biological condition gradient analysis identified nutrients
- Feeding group analysis
- Observations of thick filamentous algae



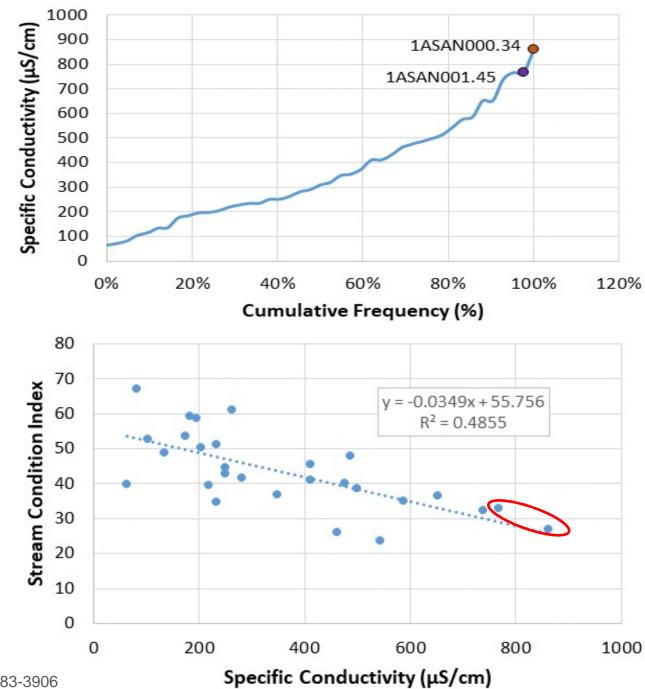
Support for Total Dissolved Solids (TDS) as a Stressor

 Conductivity and TDS in the high probability range for stress effects

Sample Month-Year

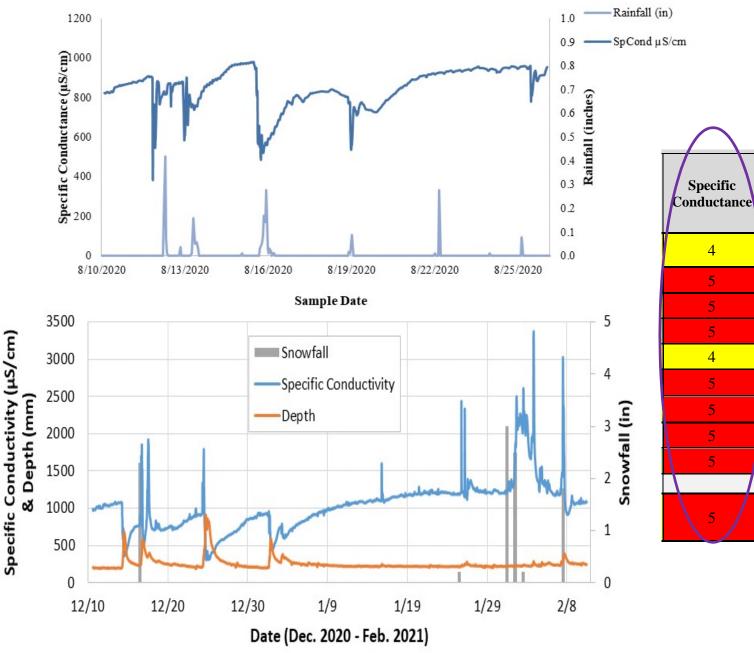
Station ID

 \bigcirc


1ASAN000.34

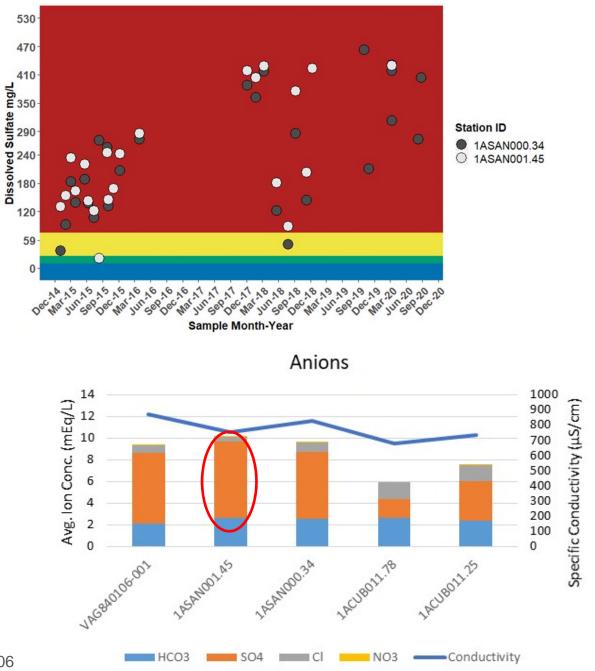
1ASAN001.45

1ASAN001.45


Support for TDS as a Stressor

- 98th and 100th percentile of conductivity in Triassic Basin ecoregion
- Conductivity significantly correlated with VSCI in Triassic Basin

Support for TDS as a Stressor


- Biological condition gradient analysis identified specific conductivity
- Toxicity testing
- Continuous monitoring data identified high baseline conductivity with wintertime extremes

Support for Sulfate as a Stressor

- Sulfate levels averaged in the high probability range for stress effects
- Some literature threshold values for sulfate toxicity were exceeded
- Sulfate was the predominant anion contributing to TDS

Planning for TMDL Development TMDL Targets, WQ Monitoring & Project Timeline

TMDL Targets and Contributing Factors

Churchan			Stream	Contributing Factors				
Stream	0		Underlying Geology					
Sand Branch	Total Dissolved Solids (TDS)			Land Disturbance				
	Total Phosphorus		Sand Branch	Percent Imperviousness				
	Sediment			Degraded Riparian Buffer				

- TMDL targets identified from multiple lines of evidence
- TDS will collectively address sulfate, and also ions classified as possible stressors (chloride, potassium, and sodium)
- Factors identified that contribute to the impaired benthic community, but not appropriate for TMDL development

Water Quality Monitoring

- In support of TMDL development
 - Source identification
 - Threshold development
- Review existing data to identify if additional monitoring data is needed to establish existing loads from all pollutant sources
- May / June: Ambient toxicity testing at downstream station (1ASAN000.34)

Project Timeline

	Oct-	Nov-	Dec-	Jan-	Feb-	Mar-	Apr-	May-	Jun-	Jul-	Aug-	Sep-	Oct-	Nov-	Dec-	Jan-	Feb-	Mar-
	20	20	20	21	21	21	21	21	21	21	21	21	21	21	21	22	22	22
Stressor Analysis (SA)	_																	
1st TAC & Public Meeting (same day)				! !								!						
2nd TAC Meeting - Input on SA findings									 	İ	İ	İ						
3rd TAC Meeting - Input on SA findings						1			1	1								
2nd Public Meeting - SA findings and kick-off TMDL																		
Source Assessment and Model Development																		
4th TAC Meeting - Input on TMDL Process and						1					1							
Model Development																		
Development of TMDL Allocations				 														
5th TAC Meeting - Input on TMDL Allocations																		
Model and Allocation Revisions per TAC Input								 										
Draft TMDL Report				1		1		1			Ì	. —						
Final (3rd) Public Meeting										1								
Finalize Report																		
	Oct-	Nov-	Dec-	Jan-	Feb-	Mar-	Apr-	May-	Jun-	Jul-	Aug-	Sep-	Oct-	Nov-	Dec-	Jan-	Feb-	Mar-
	20	20	20	21	21	21	21	21	21	21	21	21	21	21	21	22	22	22

Next Steps

- Stressor analysis report
 - TAC review: provide comments by May 6th
 - Review / address comments
- Hold 2nd Public Meeting
 - May 26th, beginning at 4:30 P.M.
 - Finalizes Stressor Analysis
 - 30-day public comment period
 - Kick-off TMDL development
- Begin TMDL development to address 3 pollutants
 - Source identification
 - Model development

Meeting Feedback

- Questions or Comments:
 - Sarah Sivers: (703) 583-3898 or <u>Sarah.Sivers@deq.virginia.gov</u>
- Meeting Feedback:
 - Virtual Meeting Public Comment Form (shared by email)
 - Submit to FOIA Board, external to DEQ

