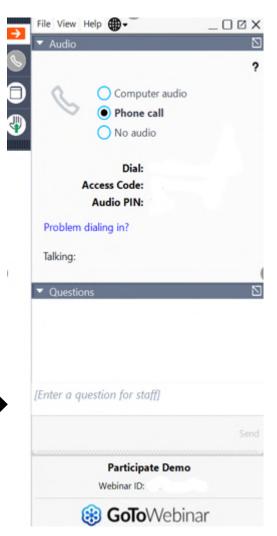
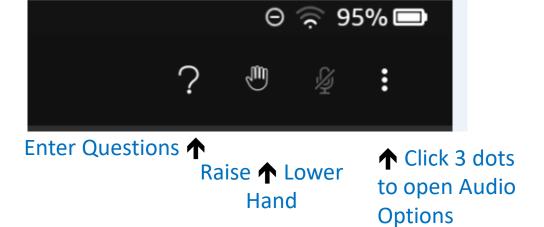


Sand Branch Public and Technical Advisory Committee Meetings

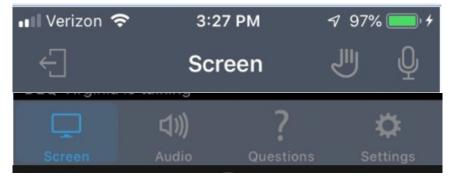

PC/Laptop View

Minimize the control panel → or maximize the control panel ←

Raise or lower your hand →


*Phone call provides better quality audio

Enter questions then click send →


Mobile Devices View

Android

iPhone

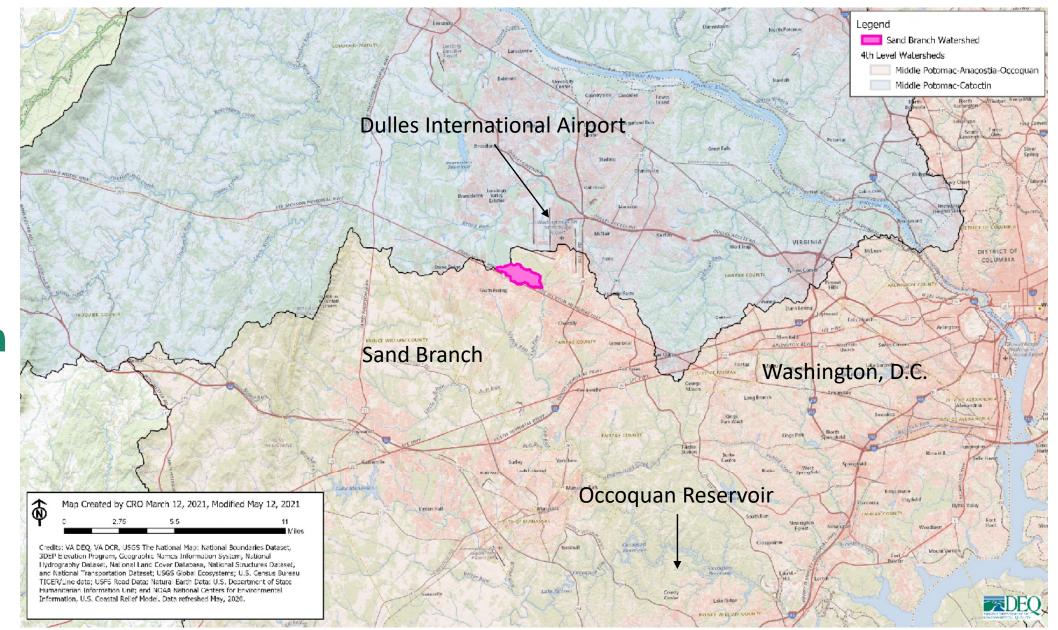
Raise **↓** Lower Hand

Sand Branch Benthic TMDL Study Second Public Meeting

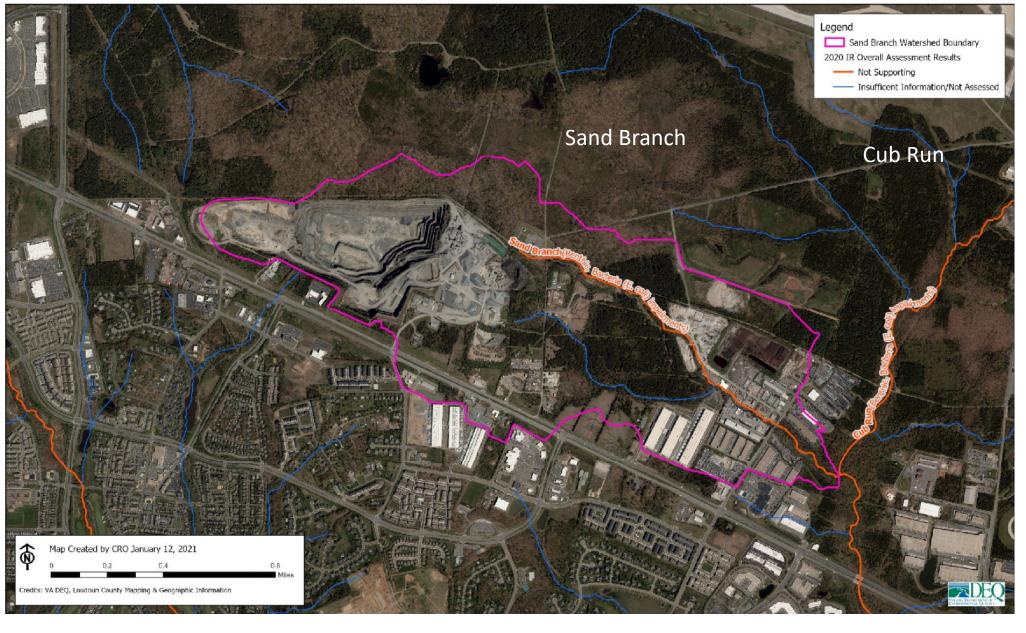
Sarah K. Sivers
Water Quality Planning Team Lead
Virginia Department of Environmental Quality
May 26, 2021

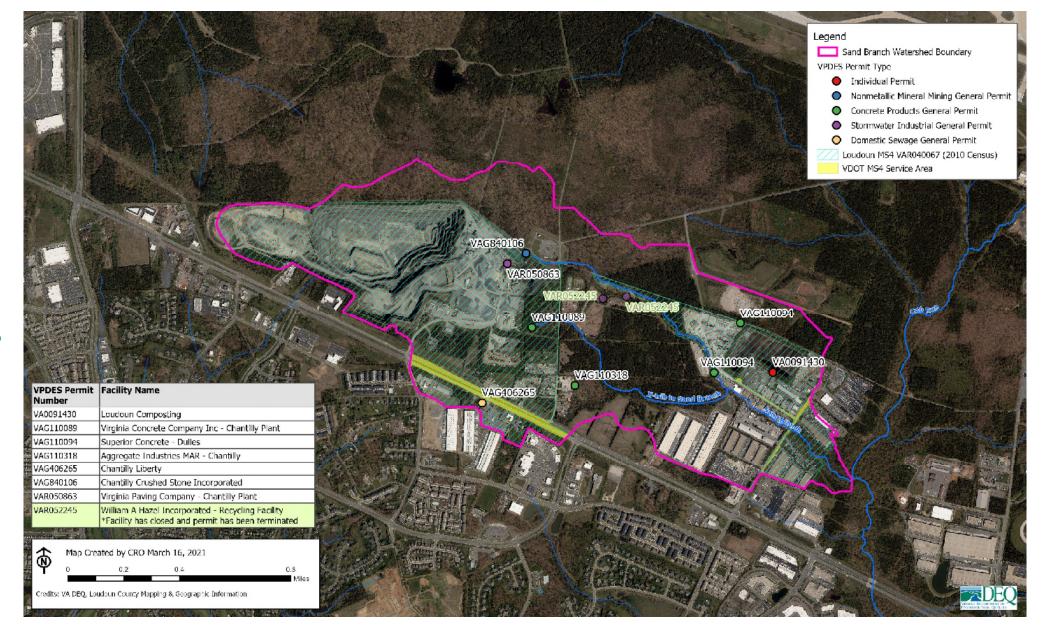
Agenda

- Project Overview
- Benthic Stressor Analysis
 - Analysis Overview
 - Water Quality Chemistry Data Analysis
 - Biological and Habitat Data Analysis
 - CADDIS
 - Probable Stressors
- TMDL Development
 - TMDL Targets
 - Project Timeline
- Wrap-up and Next Steps



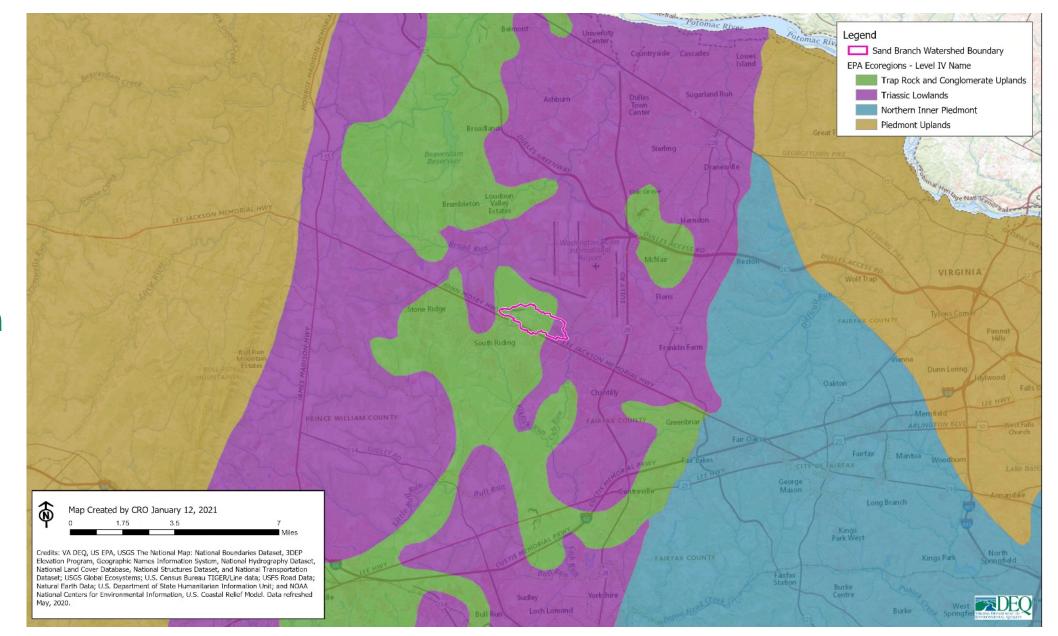
Project Overview Sand Branch

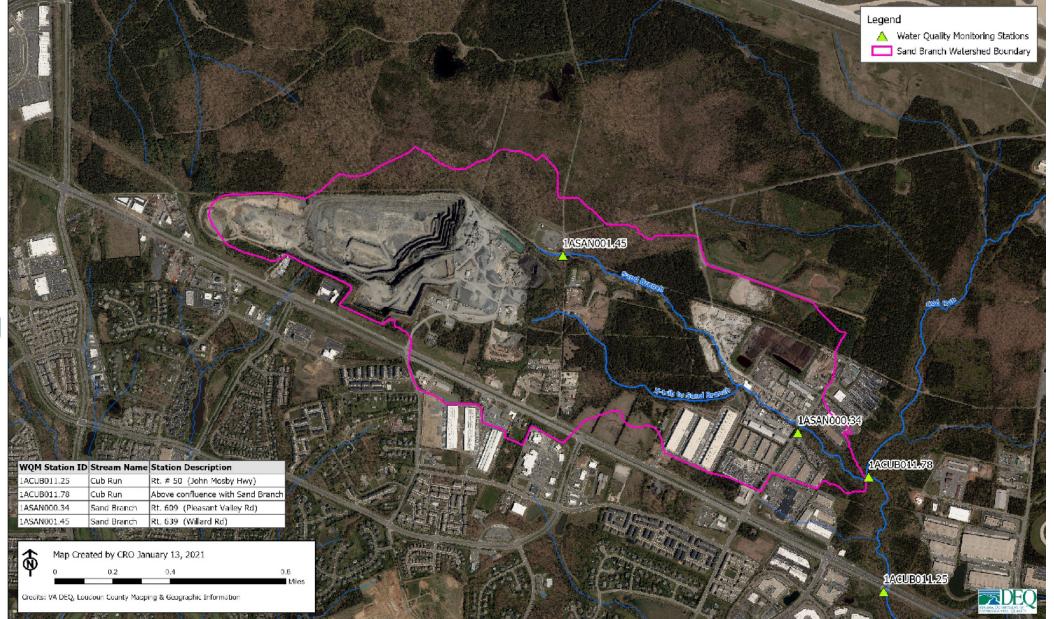




Water Quality Impairments

- Recreational Use (E.coli)
- Aquatic Life Use (Benthics)



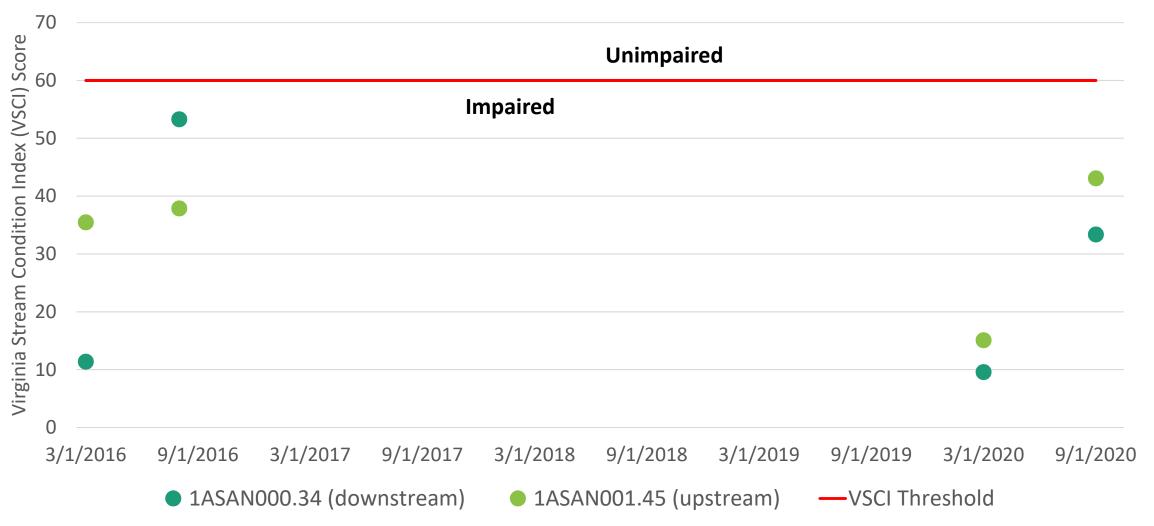

Permitted Discharges

Ecoregion

Water Quality Monitoring Stations

Benthic Macroinvertebrate Community

- One metric to evaluate attainment of the Aquatic Life Use
- Indicator of Biological Community Health
 - Live on the stream bottom 1-2 years, relatively sedentary
 - Indicates long-term effect of pollution and ecosystem impact
 - Evaluated using the Virginia Stream Condition Index (VSCI)
 - Multi-metric index
 - Based upon a reference community of organisms

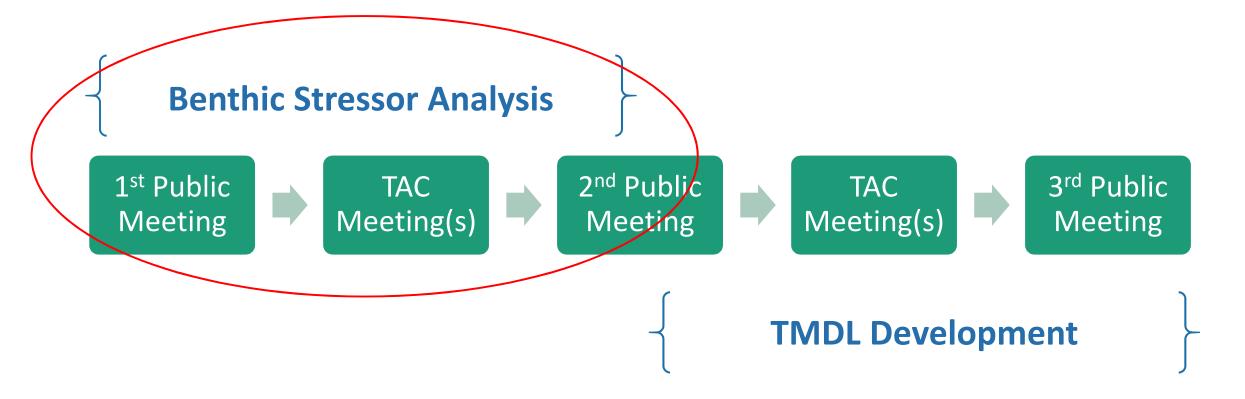


Virginia Stream Condition Index (VSCI) Scores

Benthic Stressor Analysis

Analysis Overview

Benthic Stressor Analysis

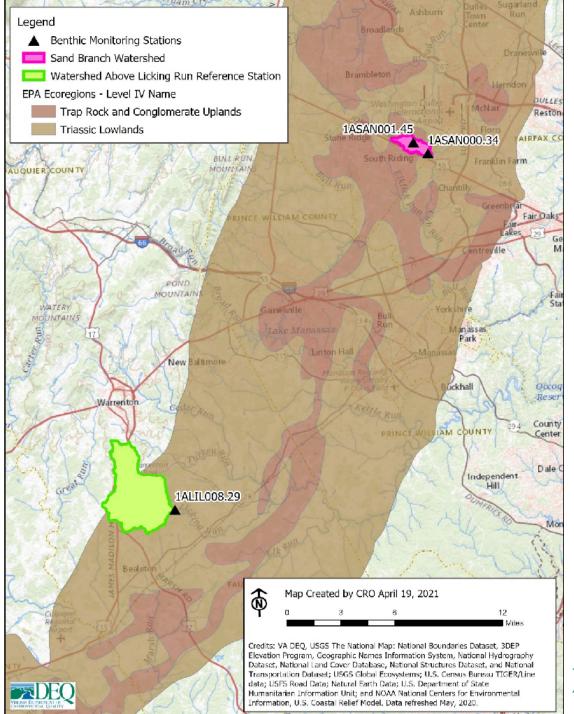

"What is causing the benthic community to be unhealthy?

- 1. List all potential causes applicable to the watershed
 - For example: nutrients, sediment, toxics, etc.
- 2. Analyze the available data and information for and against each possible stressor
 - Such as water chemistry, habitat, land use, point and nonpoint sources
- 3. Categorize each cause into:

Public Participation in a Benthic TMDL Study

DEQ Water Quality Monitoring Data

- Chemical (2015-2020)
 - Field parameters (pH, dissolved oxygen, specific conductivity, temp.)
 - Solids (total dissolved solids, total suspended solids)
 - Nutrients (nitrogen, phosphorous)
 - Ionic strength
 - Metals
- Benthic macroinvertebrates (2016 and 2020)
- Bioassay (Toxicity) Testing (ambient)
 - Acute and chronic (1 sample 2020)
 - Water flea (Ceriodaphnia dupia) and Fathead minnow (Pimephales promelas)
- Effluent monitoring (collected by VPDES Permit-holders and DEQ, 2014-2018)



Reference Watershed

- Comparison to a reference condition is helpful in evaluating some parameters and biological conditions
- Licking Run
 - Same Triassic Basin ecoregion
 - Unimpaired benthic condition (VSCI = 62.26)
 - Sufficient water quality data

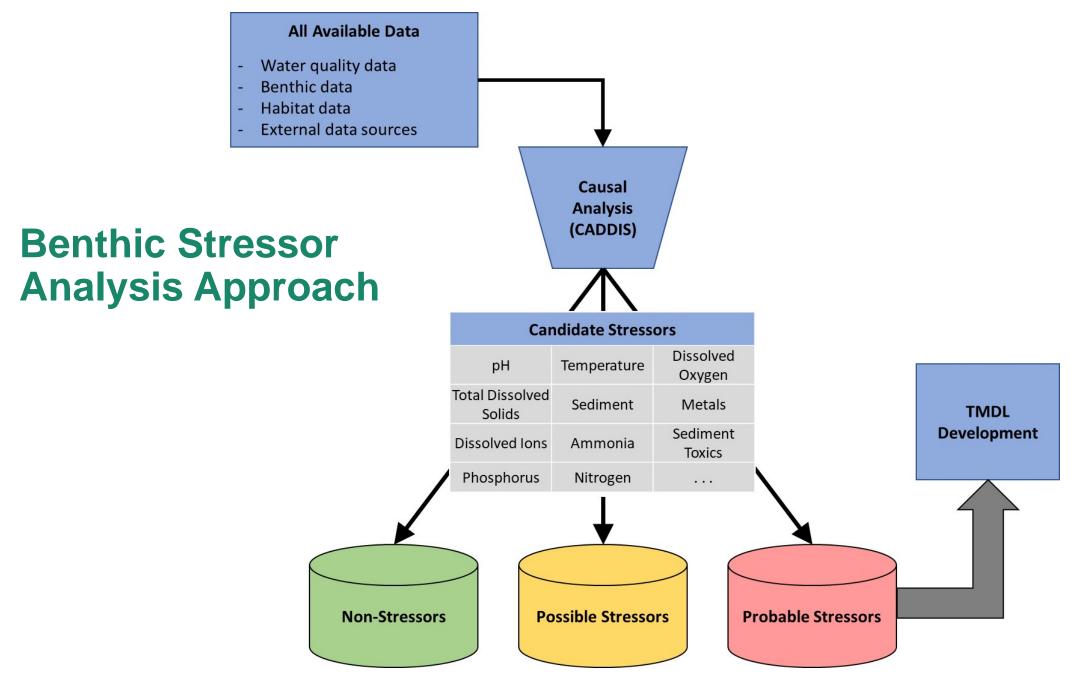
Considerations for Water Chemistry Data Analysis

- Monitoring data evaluation:
 - Comparison to Water Quality Standards (9VAC25-260)
 - Comparison to stressor thresholds developed from DEQ's Freshwater Probabilistic Monitoring Program¹
 - Seasonal or daily water quality variations
- Other relevant data considered:
 - Hydrology (stream flow and precipitation)
 - Potential influence of Triassic Basin geology
 - Surrounding land uses

¹DEQ, 2017. Stressor Analysis in Virginia: Data Collection and Stressor Thresholds. DEQ Technical Bulletin WQA/2017-001

Considerations for Biological Data Analysis

- Review individual metrics of the Virginia Stream Condition Index Score (VSCI) that likely resulted in low scores
- Identify tolerance, sensitivity, taxonomic composition, and functional feeding group of collected benthic organisms
- Bioassay of ambient water sample (downstream DEQ sample location) to learn if the stream exhibits toxicity



USEPA's Causal Analysis/Diagnosis Decision Information System (CADDIS)

- For each candidate stressor and stream
- 18 lines of evidence evaluated
- Scored on a relative scale of -3 to +3 for strength of support
- Scores summed
- Higher relative score, more probable the stressor

Ex: Candidate Stressor 1 Lines of Evidence	Stream 1	Stream 2		Stream 3	Stream 4	Stream 5	Stream 6		
Spatial Co-occurrence	-3	-3		-1	-1	+3	+3		
Temporal Co-occurrence	-2	-2		0	0	+2	+2		
Causal Pathway	Sco	re o	\Box	. 1	. 1	lanation	. 1		
Stressor-Response Relationships from the Field	-2 +3	-2	The	e line of evic			ts the candi	date	
Temporal Sequence	-3	-3		3.7		e impairme			
Symptoms	-2 +2	2 -2					rately supports the ause of the impairment		
Stressor-Response Relationships from Other Field Studies	-2 +1	The line of evidence <u>weakly supports</u> the candidate stressor as the cause of the impairment							
Stressor-Response Relationships from Laboratory	2 0	2	car	ndidate stres	sor as the	cause of the	rt or refute impairment		
Studies	-1						he candidate)	
Stressor-Response Relationships from Simulation Models	-3 -2	-1	stressor as the cause of the impairment The line of evidence moderately refutes the candida stressor as the cause of the impairment				lidate		
Mechanistically Plausible Cause	-2 ₋₃	-2					the candida	ite	
Manipulation of Exposure at Other Sites	-2	-2	stre	essor as the	cause of th	e impairme	nt ,2		
Analogous Stressors	-2	-1		0	0	+1	+1		
Consistency of Evidence	-3	-2		0	0	0	0		
Explanation of the Evidence	-2	-2		0	0	0	0		
SUM	-32	-27		+1	+3	+12	+10		
	Non-S	tresso	r		sible ssor		pable essor		

Benthic Stressor Analysis Water Chemistry Data Analysis

Chemical / Physical Parameters Analyzed

Candidates with stressor thresholds ^{1,2} : Sediment ³	рH	Dissolved Oxygen (DO)	Total Phosphorus	Total Dissolved Solids (TDS)	Potassium
	Temperature	Specific Conductivity	Total Nitrogen	Sulfate	Chloride
	Sediment ³	Sodium	Metal Cumulative (Metals CCU)	Criterion Unit	Individual Metals, Dissolved
Candidates without stressor thresholds2:	Total Suspended Sol	otal Suspended Solids (TSS)		DO (Saturation)	Turbidity

¹DEQ's Freshwater Probabilistic Monitoring Program (DEQ, 2017. Stressor Analysis in Virginia: Data Collection and Stressor Thresholds. DEQ Technical Bulletin WQA/2017-001)

²Where water quality criteria exists for a parameter, that value was also in the analysis (Water Quality Standards, 9VAC25-260). Those parameters with criteria are denoted in bold, italicized text.

³ Sediment was evaluated using Log Relative Bed Stability (LRBS) index and Habitat.

Stressor Thresholds: Definitions of Stress Probabilities

Probability of Stress to Aquatic Life	Definition
High Probability	Values that are the highest in Virginia, resulting in degradation of the benthic community.
Medium Probability	Noticeable evidence of harm causing a possible shift in benthic communities, changes noticeably above background conditions.
Low Probability	Slightly above background conditions, but unlikely to cause a major benthic community shift.
No Probability	Background conditions.

Benthic Stressor Analysis Threshold Results

		Parameter									
Monitoring Location	рН	DO	TP	TN	SC	TDS	Sulfate	Chloride	Potassium	Sodium	Metal CCU
1ASAN001.45	Low	No	No	Medium	High	High	High	Low	Low	High	-
1ASAN000.34	Low	Low	Low / Medium	Medium	High	High	High	Low	Medium	High	No
Combined	Low	Low	Low	Medium	High	High	High	Low	Low	High	-

Comparison of Dissolved Metals to Water Quality Criteria

		Parameter / Sample Exceedance of WQS (Y/N)								
Monitoring Location	As	Cd	Cr ²	Cu	Pb	Ni	Se	Ag	Zn	
1ASAN000.34 ¹	No	No	No	No	No	No	No	No	No	

¹ Results based upon 3 sample events: October 3, 2019, October 31, 2019 and September 17, 2020

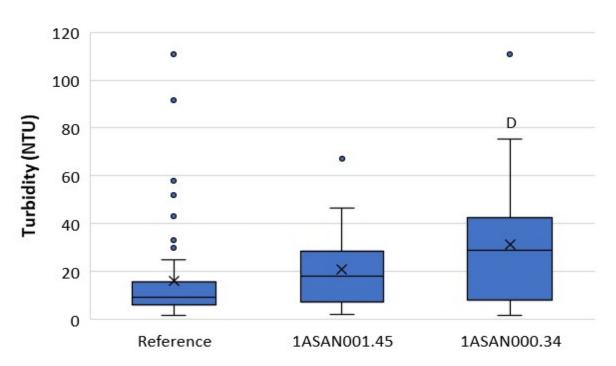
² Chromium was measured as total dissolved with no distinction among the valent forms, Cr III and Cr VI.

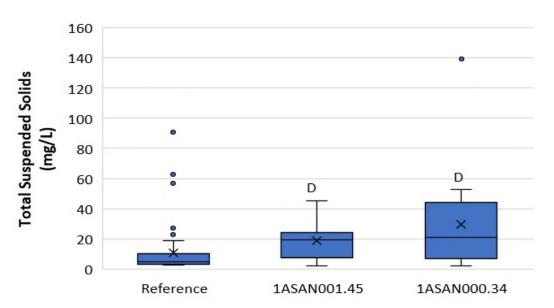
Comparison of Chemical Data to Water Quality Criteria

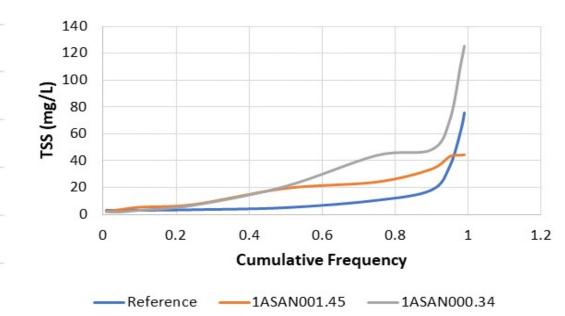
- Ammonia
 - No excursions of the acute criterion
 - Single sample excursion of chronic criterion on 5/22/18
- No excursions of criteria for:
 - Chloride
 - Dissolved oxygen
 - pH
 - Temperature

	1	ASAN000.3	4	1/	ASAN001.45	
Monitoring Date	Ammonia (mg/L)	Acute Criteria (mg/L)	Chronic Criteria (mg/L)	Ammonia (mg/L)	Acute Criteria (mg/L)	Chronic Criteria (mg/L)
12/5/2017	0.01 ª	7.25	1.314	0.01 a	6.74	1.187
1/23/2018	0.01 ª	5.94	1.070	< 0.008 b	6.57	1.165
3/12/2018	0.03 ª	5.01	1.089	< 0.008 b	5.75	1.077
5/22/2018	1.5	5.86	1.042	0.06	3.34	0.688
7/26/2018	0.06	2.97	0.627	0.04	3.13	0.650
9/6/2018	0.36	3.21	0.657	0.02 ª	2.60	0.564
11/8/2018	0.48	9.19	1.494	0.02 a	7.13	1.239
12/13/18 ^c				0.01 a		
10/3/2019	0.05	3.52	0.717			
10/31/2019	0.02 ª	7.55	1.265			
3/9/2020	< 0.014 b	1.87	0.403	< 0.014 b	2.94	0.603
3/11/2020	< 0.014 b	6.34	1.130	< 0.014 b	3.33	0.667
8/10/2020	0.02 ª	3.73	0.746			
8/26/2020	< 0.014 b	6.38	1.087			

^a Analyte detected above the method detection level but below the method quantification limit.

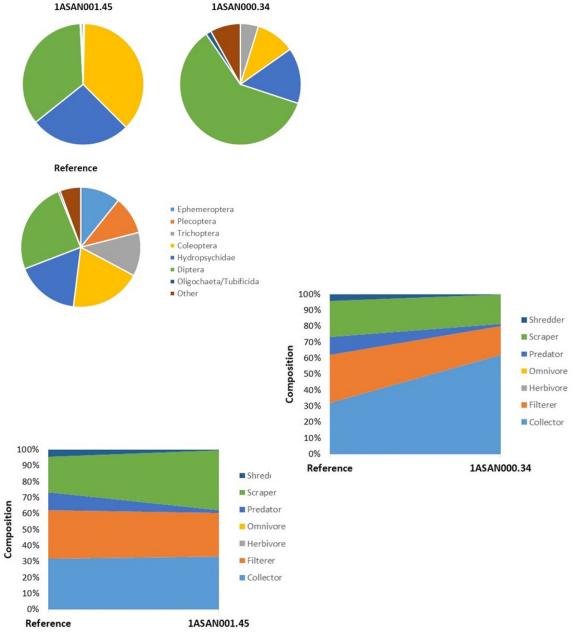



^b Material analyzed for, but not detected. Value is the limit of detection.


^c pH and temperature data were not collected so acute/chronic criteria cannot be calculated

Total Suspended Solids (TSS) and Turbidity

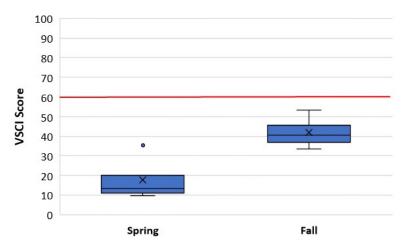
- TSS: Higher / more frequent
- Turbidity: Higher levels


Benthic Stressor Analysis

Biological and Habitat Data Analysis

Benthic Data

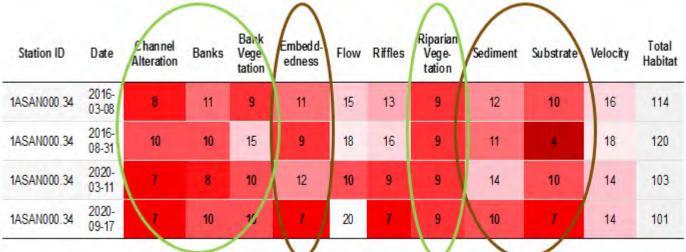
- Community Composition Analysis¹
 - Loss of almost all sensitive taxa
 - Dominance by a few tolerant taxa
- Functional Feeding Group Analysis¹
 - Based upon method of feeding (shredders, scrapers, predator, filterer, etc.)
 - Upstream site: Increase in Scrapers
 - Downstream site: Increase in Collectors


¹Benthic data compared to Licking Run (Reference)

Benthic Data

- Seasonal pattern of VSCI scores
- Biological Condition Gradient (BCG) Analysis
 - Stressor-specific tolerance scores (1-5) for a set of stressors established for benthic macroinvertebrates (genus-level)
 - High scores indicates dominance/tolerance in presence of stressor
 - High scores (4 and 5) top 5 dominant taxa for specific conductivity, nutrients and watershed % imperviousness

Genus Level	No. of	Functional	General			вююдіса	l Condition Grad	ment (BCG) A	ttribute As	Signments to	r specific s	tressors	1
Genus Level	Individuals	Feeding Group	eding Attribute	DO	Acidity (pH)	Alkalinity (pH)	Specific Conductance	Chloride	Sulfate	Nutrients	Total Habitat Score	Relative Bed Stability	Watershed % Impervious
Stenelmis	284	Scraper	4	4	4	4	5	4	4	4	5	4	.5
Chironomidae (A)	261	Collector	4	4	4	4	4	4	4	4	4	4	4
Cheumatopsyche	123	Filterer	5	4	3	4	5	4	4	5	4	4	5
Hydropsyche	76	Filterer	4	3	3		5	4	5	5	4	4	.5
Hydropsychidae	13	Filterer	4	3	3	4	4	3	4	4	4	4	4



Habitat / Physical Data

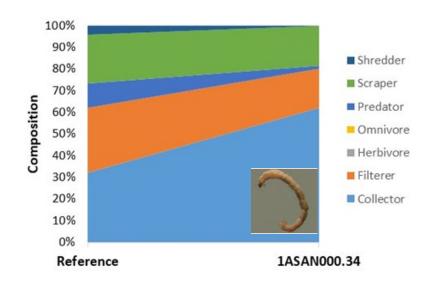
- Log Relative Bed Stability (LRBS): May indicate a hardening of the substrate (80%) from scour
- Habitat: Individual metrics low for substrate quality and riparian quality

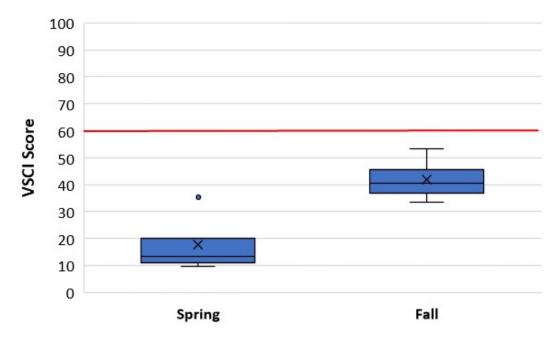
	Para	ameter
Monitoring Location	LRBS	Habitat
1ASAN001.45	-	Medium
1ASAN000.34	No	Medium
Combined	-	Medium

LRBS Metrics	Value
% Sands and Fines	12%
Percentile Sands and Fines ¹ (Northern Piedmont / Statewide)	12 th / 14 th
% Boulders, Cobbles, Gravel	43%
Percentile Boulders, Cobbles, Gravel ¹ (Northern Piedmont / Statewide)	52 th / 49 th
% Hardpan	22%
% Concrete or Asphalt	15%
Average Embeddedness	38%
Percentile Embeddedness (Northern Piedmont / Statewide)	18 th / 21 th

Benthic Stressor Analysis CADDIS Overview

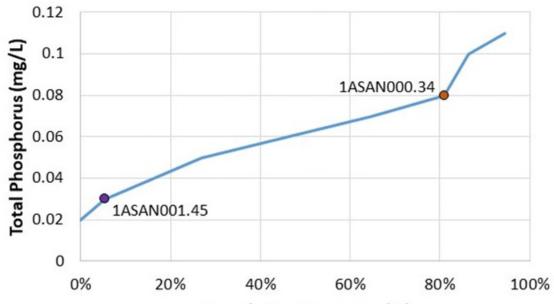
CADDIS Results

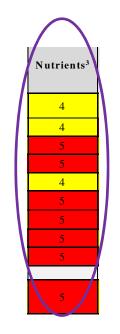

- Non-stressors
- Possible stressors
- Probable stressors

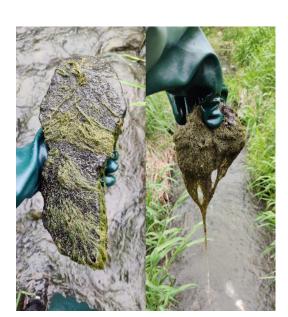

Candidate Stressor	CADDIS Score
рН	-24
Temperature	-13
Dissolved Oxygen	-12
Dissolved Metals	-9
Total Nitrogen	1
Chloride	1
Potassium	1
Ammonia	2
Sodium	3
Sediment	6
Total Phosphorus	16
Sulfate	16
Conductivity/TDS	31

Support for Sediment as a Stressor

- Habitat scores: medium probability range for stress effects
- Seasonal pattern of VSCI scores
- Community composition (pollutant-tolerant)
- Feeding group analysis (collectors/scrapers)
- TSS: higher levels occur more frequently than reference site
- Turbidity: more turbid

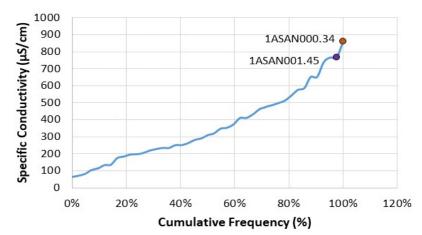


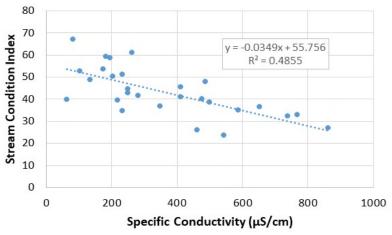


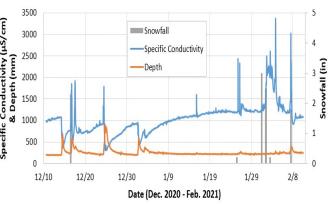

Support for Phosphorus as a Stressor

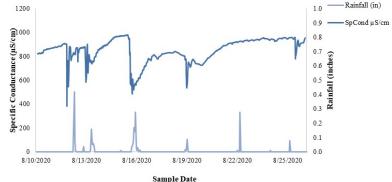
- Medium probability range for stress effects
- 81st percentile of Triassic Basin ecoregion
- BCG analysis identified nutrients
- Levels exceeded recommended EPA criteria for ecoregion
- Feeding group analysis
- Observations of thick filamentous algae

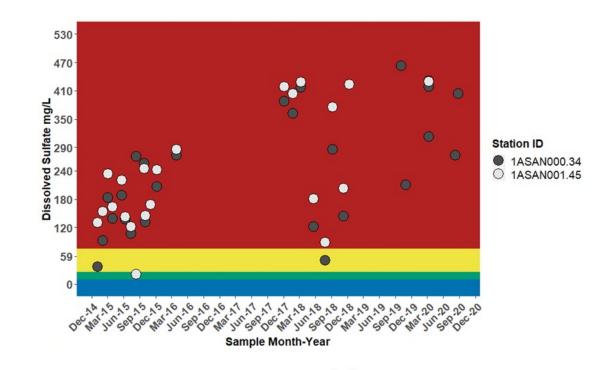
Cumulative Frequency (%)

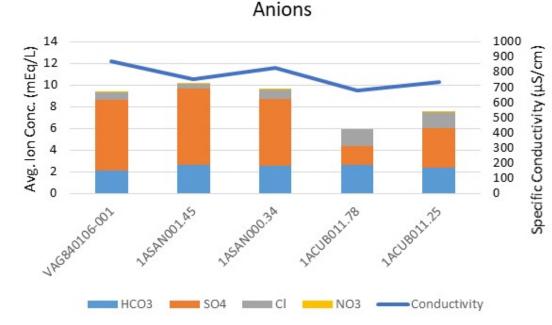





Support for Total Dissolved Solids (TDS) as a Stressor


- Conductivity / TDS: high probability range for stress effects
- 98th and 100th percentile of conductivity in Triassic Basin ecoregion
- Conductivity significantly correlated with VSCI in Triassic Basin
- BCG analysis identified specific conductivity
- Ambient toxicity testing
- Continuous monitoring data identified high baseline conductivity with wintertime extremes



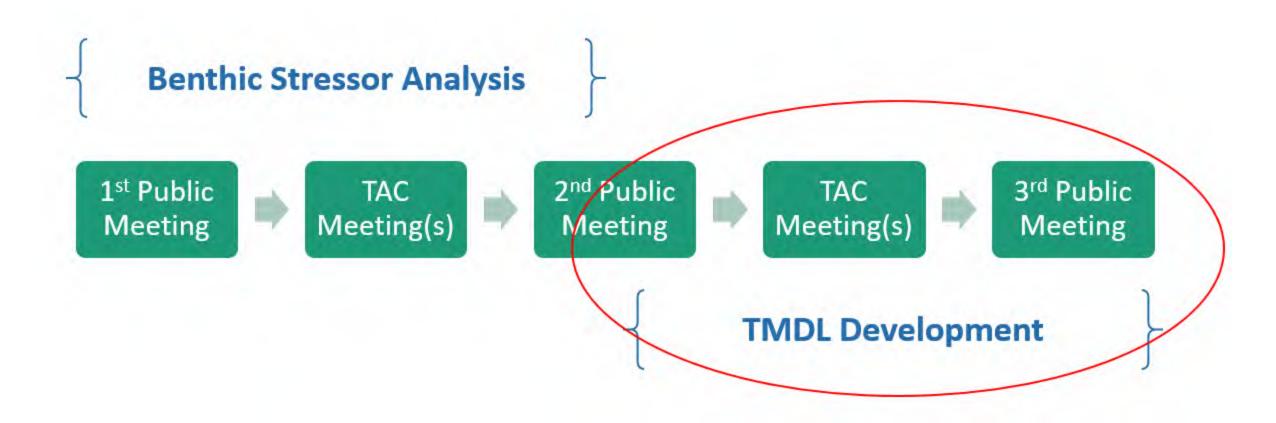


Support for Sulfate as a Stressor

- Sulfate: high probability range for stress effects
- Some literature threshold values for sulfate toxicity were exceeded
- Sulfate was the predominant anion contributing to TDS

TMDL Development TMDL Targets & Project Timeline

TMDL Targets and Contributing Factors


Stream	TMDL Target
	Total Dissolved Solids (TDS)
Sand Branch	Total Phosphorus
	Sediment

Stream	Contributing Factors
	Underlying Geology
Sand Branch	Land Disturbance
Sand Branch	Percent Imperviousness
	Degraded Riparian Buffer

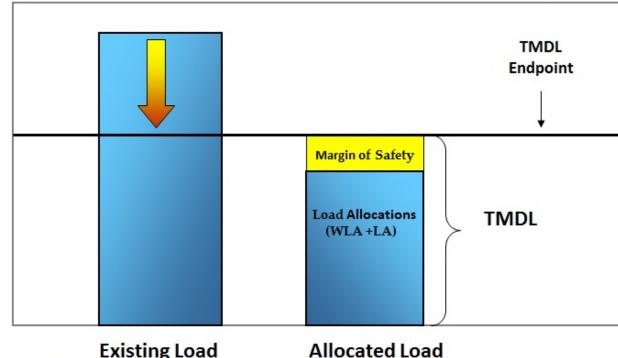
- TMDL targets identified from multiple lines of evidence
- TDS will collectively address sulfate, and also ions classified as possible stressors (chloride, potassium, and sodium)
- Factors identified that contribute to the impaired benthic community, but not appropriate for TMDL development

Public Participation in a Benthic TMDL Study

Total Maximum Daily Load (TMDL)

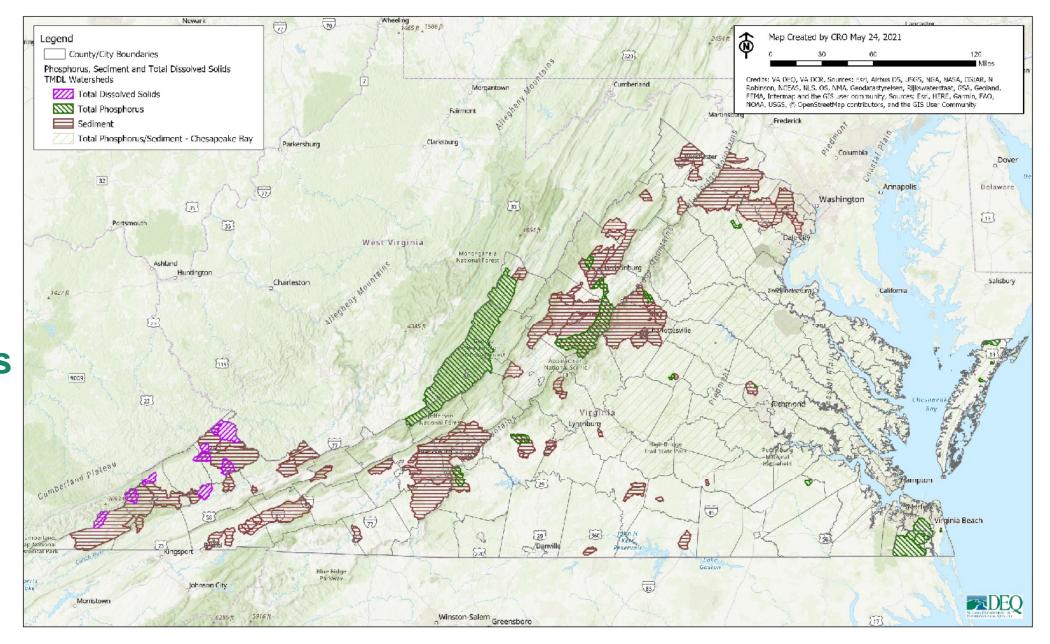
A TMDL is the total amount of a pollutant a waterbody can receive and still meet the water quality criteria for that pollutant

$$TMDL = WLA + LA + MOS$$

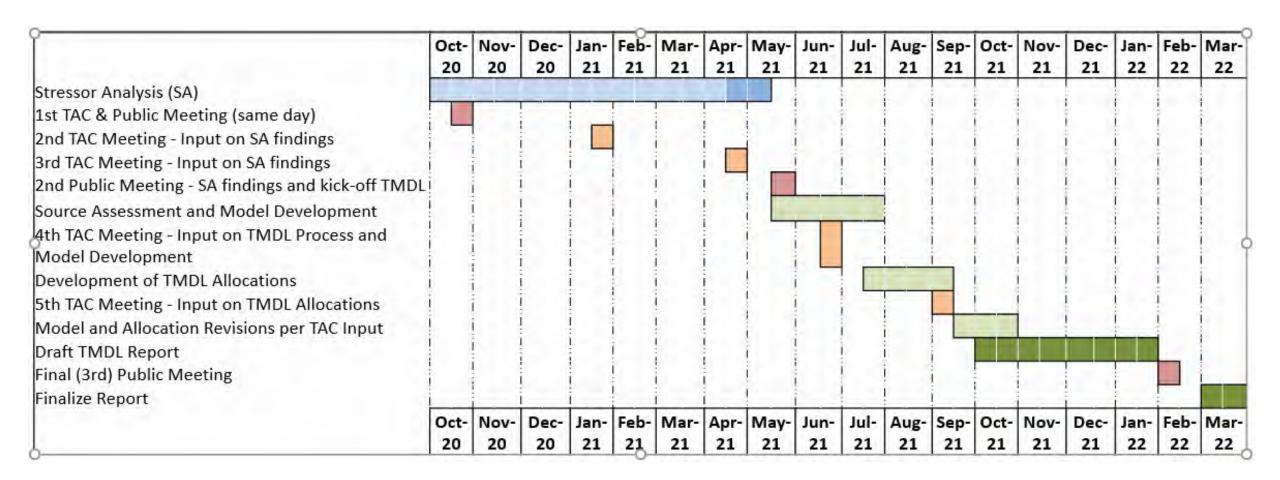

Where:

WLA = Wasteload Allocation

LA = Load Allocation


MOS = Margin of Safety

TMDLs
Completed
for
Sediment,
Total
Phosphorus
and Total
Dissolved
Solids


TMDL Development Process

- Characterize the watershed (e.g. land use, soils, hydrology, etc.)
- Identify pollutant sources and associated loadings
- Model the existing baseline condition and projected condition that attains the water quality endpoint
- Calculate pollutant reductions to attain the water quality endpoint
- Assign loadings to wasteload allocations (WLA) and load allocation (LA)

Project Timeline

Next Steps

- Wrap-up benthic stressor analysis
 - 30-day Public Comment Period on Report
 May 27 June 28
- Begin TMDL development to address the aquatic life use impairment
 - TMDLs for each of the following pollutants:
 - Sediment
 - Total Dissolved Solids (TDS)
 - Total Phosphorus

Meeting Feedback

- Comments (written) on the Benthic Stressor Analysis Report
 - Email: <u>Sarah.Sivers@deq.virginia.gov</u>
 - Mail: 13901 Crown Court, Woodbridge VA 22193
- Project questions or comments
 - Sarah Sivers: (703) 583-3898 or Sarah.Sivers@deq.virginia.gov
- Meeting Feedback
 - Virtual Meeting Public Comment Form (shared by email)
 - Submit to FOIA Board, external to DEQ

